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Abstract 
It is sometimes argued that standard state-of-practice logit based models cannot forecast the 

demand for substantially reduced travel times, for instance due to High Speed Rail (HSR). 

The present paper investigates this issue by reviewing travel time elasticities for long-

distance rail travel in the literature and comparing these with elasticities observed when new 

HSR lines have opened. This paper also validates the Swedish official long-distance model 

and its forecasted demand for a proposed new HSR track, using aggregate data revealing 

how the air-rail modal split varies with the difference in generalized travel time between rail 

and air. The official linear-in-parameters long-distance model is also compared to a model 

applying Box-Cox transformations. The paper contributes to the empirical literature on long-

distance travel, long-distance elasticities and HSR passenger demand forecasts. Results 

indicate that the Swedish state-of-practice model, and similar models, is indeed able to 

predict the demand for a HSR reasonably well. The non-linear model, however, has better 

model fit and slightly higher elasticities. 
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Introduction 
Long-distance travel stands for a disproportionately large share of traffic 
production compared to its share of trip making. Worldwide there are great 
hopes that High Speed Rail (HSR) may help to alleviate the heavy load of traffic in 
road and air corridors and improve interregional accessibility. There is a wide 
political backing for investments in HSR in many countries and the European 
Union is considering increasing the financial funding for HSR projects (European 
Commission, 2010). However, HSR requires substantial investments. The 
economic rationale for allocating public money to construction of new HSR 
tracks is highly dependent on the present volume of rail travel, generation of 
new rail trips, and the extent to which air and car trips would be diverted to rail.  
 
A common argument is that state-of-practice forecast models tend to 
underpredict demand when travel times are substantially reduced for instance 
due to HSR, and specifically that such models predict too small a diversion of 
trips from air to rail. There have so far not been many studies trying to validate 
forecast models in this respect, which is the purpose of the present study. 
Flyvbjerg et al. (2005) analyze, however, statistically how accurate demand 
forecasts are, finding that these have systematically overestimated traffic 
volumes of rail investments. Moreover, Flyvbjerg et al. find that forecasts have 
not improved over time as estimation techniques have improved and that the 
demand for road investments is not overestimated as much as for rail 
investments, indicating that the overestimation of demand for rail investments is 
not primarily connected to the validity of forecast models, but to strong political 
pressure. 
  
The purpose of this paper is to investigate whether state-of-practice forecasting 
models can predict the demand for HSR. First, model-based long-distance 
elasticities in the literature are compared with elasticities observed when new 
HSR lines have been introduced. Then the paper describes the official Swedish 
long-distance model briefly, studies its elasticities and demand forecast for a 
suggested HSR track, and validates the forecast against previous literature and 
aggregate Swedish data. The Swedish official long-distance model, within the 
modeling package Sampers (administered by the Swedish Transport 
Administration), has been in use for some ten years and is one of the most 
comprehensive state-of-practice long-distance models in the world presently in 
use for appraisal. The response of the linear-in-parameters official long-distance 
model is also compared to that of a model applying Box-Cox transformations on 
time and cost parameters. The paper contributes to the empirical literature on 
long-distance travel elasticities and HSR passenger demand forecasts.  
 
There are reasons to believe that long-distance models are less reliable than 
models for regional travel. First, the vast majority of forecasting models deal 
with regional travel, although the interest in HSR has triggered the development 
of long-distance models in many countries (e.g. Ben-Akiva et al. (2010), de Bok et 
al. (2010), Outwater et al (2010) and Rohr el al. (2010)). When developing long-
distance models the same modeling techniques are used as have traditionally 
been used for regional travel although long-distance travel seems to be more 
heterogeneous. Second, non-linearity in the sensitivity to travel time makes long-
distance modeling complex. Gaudry (2008) demonstrates that mode choice logit 
models assuming linear sensitivity underestimate the cross-elasticity in HSR line 
forecasts.  Daly (2010) reveals a large amount of evidence of non-linear time and 
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cost sensitivity in previous research. Third, since long-distance travel is less 
frequent and less evenly distributed in the population, data collection is more 
difficult. For instance, long reporting periods used to increase the chance that the 
respondent can report at least one journey induces underreporting of trips due 
to forgetfulness (Armoogum & Madre, 1997;  Axhausen et al., 1997).   
  
Section 2 reviews evidence of elasticities for HSR investments in the literature. 
Evidence of cross-elasticities of long-distance travel is virtually non-existent, and 
this section therefore concentrates on direct elasticities. Besides, cross-
elasticities are less meaningful to compare between situations since they tend to 
be highly dependent on specific market conditions. Section 3 describes the 
Swedish long-distance model, with focus on the relevance for its HSR demand 
forecasts. The section also reports the implied average elasticities and cross-
elasticities, which are compared with the previous evidence.  
 
The Swedish long-distance model has been used to forecast the demand for a 
proposed new HSR track of about 500 km, connecting the country’s two largest 
cities: Stockholm and Gothenburg. In this corridor there is already an HSR line, 
called X2000, with a travel time of 3h and 5min operating on upgraded 
conventional tracks. With the new track the travel time is supposed to decrease 
to 2h and 14min1. Section 4 describes the forecasted demand response to the 
suggested HSR track and compares it with international evidence. Since cross-
elasticities are rare in the literature and difficult to compare between different 
situations, section 5 validates the forecasted effect on rail-air mode split against 
aggregate traffic count data and corresponding generalized travel time difference 
between air and rail in different relations. Section 6 concludes. 

Elasticities in the literature   
The literature on rail travel time elasticities and cross-elasticities for long-
distance travel is fairly limited. Long-distance models, which can produce 
elasticities, are few, but examples are Román et al. (2007), Atkins (2003), 
Cabanne (2003), de Bok et al. (2010) and Rohr et al. (2010). The elasticities 
implied by these studies, reported in Table 1, are in the range of -0.36 to -1.31. 
The former two papers report time and price elasticities on number of trips for a 
particular HSR line. The three latter report average trip distance elasticities, 
giving the approximate average percentage change in travel distance by rail, in 
response to a percentage change in the generalized cost of rail trips uniformly 
over all origin-destination pairs. Dargay (2010) reports average trip distance 
elasticities estimated on time series data, which have a tendency to be higher (in 
absolute terms) than those estimated on cross-section data, but it remains 
unclear why. Dargay also reports higher (absolute) elasticities for longer trips. 
 
All else equal, one expects that the trip elasticities for a particular HSR line is 
higher than average trip elasticities, predicting the change in number of trips in 
response to a uniform travel time change in all trip relations, because one of the 
responses to changes in travel times are destination choice: when travel time 
reduces, trips become on average longer. On the other hand, one expects that for 
a uniform change in travel times over all origin-destination pairs, distance 

                                                 
1
 The cost is assessed to €10-€15 billion.    
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elasticities are higher than the trip elasticities for the same reason. Hence, when 
comparing the elasticities of travel time on number of trips for a particular HSR 
line and on average trip distance over all origin-destination pairs, as in Table 1, 
there is no a prior expectation as to which ones that should be highest. And 
indeed, there is no clear pattern. Note also that one expects that models 
estimated on data with less accurate travel time information or with poor model 
specification tend to have lower elasticities.  
  
Further down Table 1 also includes observed elasticities found after the opening 
of three HSR lines. When the TGV (Train à Grande Vitesse) was introduced, the 
rail travel time was first reduced by 30 percent, and the implied travel time 
elasticity was then about -1.6 (with respect to number of trips). When travel time 
was further reduced by 25 percent, the elasticity was lower, -1.1. The number of 
trip elasticities for the Madrid-Barcelona HSR line was -1.3 and for Madrid-
Seville -1.2 (computed from volumes from Sánchez-Borràs (2010)). The 
observed elasticities seem thus in general to be larger than the model-based, 
indicating that at least some of the models may underpredict elasticities. The 
reason for the higher observed elasticities may, on the other hand, be that the 
train alternative has been very unattractive before the introduction of HSR, in 
particular in the Spanish cases.  
 
Cross-elasticities of air demand on HSR travel time are difficult to estimate and 
rare in the literature (exceptions are Ben-Akiva et al., (2010) and Rohr et al. 
(2010)).  Correlations in time and cost trends for different modes do not usually 
allow estimation of cross-elasticities in time series data, and in logit models 
cross-elasticities are very sensitive to different model specifications.  
   

Table 1: Elasticity with respect to rail in-vehicle travel time in the literature.  
Study   Elasticity  Comment 

Román et al. (2010) -0.4  (Madrid-Barcelona)                                   
-0.6 (Madrid-Zaragoza) 

Cross-section RP/SP data. 
Spanish HSR corridors.  

Atkins (2002) -0.9/-1.3 (bsn);                                               
-0.8/-0.9 (priv) 

Cross-section RP/SP data. UK 
HSR corridors.  

Cabanne (2003)  0.3 / 0.45                                   
-0.16 (Air cross-elasticity) 

Time series data models. 
Elasticity of rail accessibility. 
French HSR corridor. 

Bok et al. (2010) -0.6 (bsn)                                                        
-0.5 (commute)                                                
-0.3 (other) 

Average distance elasticity. 
Portugal. Cross-section RP data. 

Rohr et al. (2010) -0.9 (bns)                                                          
-0.4 (priv) 

Average distance elasticity. UK. 
Cross-section RP data. 

Dargay (2010) -0.49 - -3.04 Aggregate time series. UK. 
Different purposes and trip 
length segments. 

Paris-Lyon 
(Nash, 2010) 

-1.6 (phase 1)                                                    
-1.1 (phase 2) 

HSR line 1981 – 1983. 

Madrid-Barcelona -1.3 HSR line 2008. 
Madrid-Sevilla -1.2 HSR line 1992. 

 
The diversion of trips from other travel modes in different corridors 
demonstrates the variability in cross-elasticities. When the TGV between Paris-
Lyon (HSR travel time 2h) was introduced 1981 roughly half the additional rail 
traffic consisted of newly generated trips (Vickerman, 1997), and there was 
almost no direct substitution of car trips (Nash, 2010). For the Madrid-Seville 
HSR line (2h 15m) opening in 1992, where the initial market share for rail was 
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much lower, only 15 percent of the increase in rail trips was newly generated. 
Some of the increase in rail travel was due to substitution of car trips, but most of 
the additional rail trips were substituted air trips (COST318, 1998). In Germany, 
where the HSR uses existing networks, only 12 percent of the travelers on the 
HSR lines have shifted from other modes (Cheng, 2010). Cheng suggests that the 
high price of the train service explains the low shift, and another explanation is 
that HSR compete less with air travel because it is more focused on regional 
travel. Sánchez-Borràs et al. (2010) explore specifically how the demand and 
market share for rail depend on ticket prices.  
 
The air-rail split in Paris-Lyon (2h) is 9-91 percent (COST318, 1998). The air-rail 
mode split in the Madrid-Seville corridor (2h 15m) is 20-80 percent, as is the air-
rail split in the London–Paris corridor with the same HSR travel time (2h 15m) 
(Eurostar, 2011). The HSR line operating in the Madrid-Barcelona corridor (2h 
38m), opened in 2007, has an air-rail mode split of  53-47 percent, but the HSR is 
more competitive on the shorter travel segment Madrid-Zaragoza (Sánchez 
Borràs et al, 2011).  
 

 
Figure 1: Estimated relationship between air-rail split and in-vehicle train travel 

time. Source Jansson and Nelldal (2010). The shares in this do not correspond 
exactly to those referred in this text, because the latter are more recent updates. 

 
Jansson and Nelldal (2010) have estimated and plotted the relationship between 
rail travel time and the air-rail modal split on an aggregate level depicted in 
Figure 1. This relationship suggests that rail travel time is the only important 
determinant for the resulting air-rail market-share and Jansson & Nelldal suggest 
that it could be used to validate passenger forecasts. However, this type of 
relationship ignores the strong evidence found in the modeling studies referred 
above that the market share for rail is context-specific, depending on 
demographics, accessibility to airports and train stations, relative differences in 
air and rail ticket fares (determined partly by competition between travel 
modes), frequencies and the share of business travel. If these factors changes 
over time this relationship would not be valid for forecasting. This type of 

Travel time

By train (h)

Market share rai of 

the rail-air market %
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relationship is also sensitive to selection effects, i.e. to which origin-destination 
pairs that are included. 

The forecast model 
The Swedish national forecasting model, called Sampers, is administered by the 
Swedish Transport Administration. Different versions of Sampers have been 
used by the Transport Administration for evaluations for approximately 10 
years. The model includes five regional models and one model for national long-
distance trips. All sub-models are nested logit models including frequency, 
destination and mode choice interacting with the Emme/2 network assignment 
software. The long-distance sub-model includes car, coach, rail and air. The 
destination choice includes 700 zones on the national level. Different sub-models 
are estimated for business trips and private trips. A more detailed description of 
the estimation of an early version of this model can be found in Beser & Algers 
(2002).  For a more detailed description of the estimation and calibration of the 
model, see the Technical report (Transek AB, 2004). 

Estimation Data and Underreporting in Long-Distance Travel Surveys  
All sub-models have been estimated on the national travel survey, collected in 
1994–2000. The survey consists of a one-day travel diary including all trips and a 
long-distance travel diary including trips taking place in the period starting one 
day before the survey day and extending 30 days back in time for trips at least 
100 km, and 90 days back for trips at least 300 km. The long-distance model is 
estimated based on 65015 observed trips.  
 
Calibration of the model against the long-distance travel survey and traffic 
counts for rail and air indicated considerable underreporting in the survey for 
these modes (about 30 percent for train and 15 percent for air).  Comparisons 
between the long-distance and the one-day survey indicated also that car trips 
below 400 km are underreported in the long-distance travel survey (but no 
underreporting is indicated for longer car trips). The underreporting could be 
due to forgetfulness or fatigue effects, in particular for individuals making many 
long-distance trips. The problem of underreporting and possible bias in long-
distance surveys extending over a longer period has been acknowledged in other 
countries and should be subject to further research.  
 
Supply data, including various travel time and distance components for each 
travel mode, were fetched from the Emme/2 system. Car travel times were 
calculated using the assumption that a half-hour break is taken every two hours2.  
Fare matrices were used for scheduled travel modes. Car travel costs were 
assumed to be proportional to the trip distance.  

Implicit Values of Time   
The cost parameter is generic across modes and deflated in the forecast, with an 
income elasticity of -0.5 in real terms. Hence, if average incomes increase 10% 
over time, the cost parameters decrease 5%. The in-vehicle travel time 
parameter is segmented with respect to length of stay for private trips; it is 
higher for one-day trips than for overnight stays, presumably because there are 
more time constraints applying for one-day trips. For private trips, but not for 

                                                 
2
 This assumption was deduced from comparing reported travel times (including stops) with travel 

times imputed from the Emme/2 system.  
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business trips, the in-vehicle time parameter is significantly higher for car than 
for other modes. Many modeling studies (Börjesson, 2010; Wardman, 2004) 
have found that the marginal valuation of first wait time declines with increasing 
headway. Since this proved to be difficult to model directly, a piecewise linear 
function transforming headway into disutility of wait time was applied3.  
 
Table 2 reports the values of time of the business and private trips model. The 
values of time for private trips can be compared with the recently estimated 
Swedish national value of times (Börjesson & Eliasson, 2011) based on Stated 
Choice data: Car €12/h, rail €10/h and coach €6.5/h in price level 2008. The 
value of time for one-night car trips is relatively high in the demand model, but 
apart from that the figures are similar. 
 

Table 2: Values of time derived from model estimation. Unit €/h; price level 2008. 
Different values of time are reported for business trips because the cost parameter 
are segmented with respect to high and low income for those trips. 
 

 

Business 

high income 

Business 

low income 

Private trips 

1-5 days 

In-vehicle time all models; One-day trips 115.6 64.9  
In-vehicle time all models; Overnight stay 58.9 33.1  
Wait time One-day trips 227.0 127.5  
Wait time Overnight stays 92.7 52.1  
Value of one transfer One-day trips 61.6 34.6  
Value of one transfer Overnight stays 45.8 25.7  
In-vehicle time car One-day trips   17.9 
In-vehicle time car Overnight stays   11.0 
In-vehicle time other modes; One-day trips   7.7 
In-vehicle time other modes; Overnight stays   5.5 
Wait time (see eqn. 1) One-day/Overnight   20.8 
Value of one transfer    11.1  

 

How should a new technology be included in the model? 
As stated in the introduction, a common argument is that state-of-practice 
forecast models tend to underpredict demand when travel times are 
substantially reduced for instance due to HSR.  The first thing to note is that the 
cross-sectional data that the present model, and presumably most other models, 
is estimated in includes a larger variability in travel times than the time shift due 
to HSR. To forecast the effect of the HSR should therefore not be impossible. 
 
Another possible difficulty of forecasting demand for HSR could arise because 
travelers view HSR as another mode than conventional rail in some way. Using 
SP data, Burge et al.  investigate whether travelers place a value on HSR 
compared conventional rail, over and above the value due to differences in level 
of service attributes, by estimating a  mode-specific constant for HSR. They do 
find a positive HSR constant for car and air travelers but not for rail travelers. 
Since the stated preferences of the latter are assumed more creditable, the 
conclusion is that this constant should not be used for forecasting. A similar 
Swedish study (WSP Analysis & Strategy, 2012), also based in stated preferences, 

                                                 
3
 From Swedish the value of time study 1994 (Dillén & Algers, 1998): Wait = 

0.5·(min(Headway,60)+0.5·(min(Headway,120)60)(Headway>60)+0.2·(Headway-120)·(Headway 

>120)). 
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gives the same results. Burge et al. and WSP (2012) also investigate how to 
include HSR and convectional rail in the nested model structure, which depend 
on the substitution patterns between HSR, conventional rail the travel modes. 
The studies give some support for including HSR and conventional rail as 
different modes in the nesting structure, but this is still uncertain given the lack 
of revealed preference data in these studies. 
 
In the late 1990’s HSR running on upgraded conventional tracks was introduced 
in Sweden, called X2000. Different nesting structures including X2000 and 
conventional trains as one single and as two separate modes were explored 
(Beser Hugosson, 2003), giving some support for including the two train types as 
separate modes at the same level as other travel modes in the nesting structure. 
This means that if a new X2000 line was introduced with the same level of 
service as the conventional train, the market share for rail would instantly be 
twice as high. However, X2000 is different from conventional trains in the sense 
that these trains operate primarily between the largest cities at attractive 
departure times and with higher fares. The differences between the train types 
captured by the demand model could arise because of these differences, since 
they are not sufficiently captured by the models. For instance, the modeled 
impact of train fare is unreliable because of uncertain fare information and 
departure time is not accounted for. Since it is uncertain what the mode 
difference found in the estimation represents all train types, including the 
proposed HSR type evaluated in the present paper, are modeled as a single train 
mode in the later versions of Sampers. 

Elasticities  
The calibrated model implies certain elasticities, shown in Table 3, which can be 
interpreted as the percentage change in travel demand D per percentage change 
in a given attribute, x. These elasticities have been calculated by applying the 
model to a base scenario and to a scenario where the given attribute has been 
increased ten percent uniformly over all trip relations. The own elasticity, �, is 
then computed as 
 

 � =
��	(�	
 �	�⁄ )

��	(�	
 �	�⁄ )
 ,    (1) 

where ���	and ��� are the attributes referring to mode m (e.g. in-vehicle time 
and fare), in the base and change scenario, respectively. ��� and ��� indicate 
total demand, which can be measured as total travel distance per day, or as 
number of trips per day, with mode m. In Table 3 only elasticities with respect to 
total travel distance per day are reported. The elasticities for travel distance per 
day are larger (in absolute terms) than elasticities for number of trips per day, 
because responses to increased generalized travel costs include not only fewer 
trips but also shorter trips. The table also reports cross-elasticities, referring to 
the change in travel distance per day with mode m in response to a change in an 
attribute associated with another mode n:   
 

 �		 =
��	(�	
 �	�⁄ )

��	(��
 ���⁄ )
.    (2) 

 
All the elasticities have the expected sign. As travel time or travel cost increases 
for one travel mode, the demand for that mode falls, while the demand for travel 
with other modes increases.  
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The rail fare elasticity is -0.72 for business trips and -0.59 for private trips. These 
numbers are similar to those reported by Rohr et al. (2010), who find the 
corresponding elasticities to be -0.5 (business), -0.9 (commuting trips) and -0.6 
(other private trips), computed using the same method. However, these 
elasticities are lower than -1 as reported by  Dargay (2010) who uses time series 
data. The elasticity for rail in-vehicle travel time is -1.50 for business trips and -
1.01 for private trips. These figures are slightly higher (absolute value) than 
what is reported by Rohr et al. (2010) and Román et al. (2007).   

Table 3: Arc elasticities for travel distance, derived from a ten percent increase in 

each attribute 
  Car Coach Air Rail Total 

Car in-vehicle time  Business -0.87 0.60 0.55 0.66 -0.11 
Private -0.53 0.57 0.60 0.54 -0.19 
Total -0.58 0.58 0.57 0.57 -0.17 

Fuel Price Business -0.14 0.11 0.09 0.10 -0.03 
 Private -0.15 0.16 0.17 0.15 -0.04 
 Total -0.14 0.16 0.12 0.14 -0.04 

Rail in-vehicle time Business 0.16 0.14 0.16 -1.50 -0.07 
Private 0.06 0.09 0.20 -1.01 -0.08 
Total 0.08 0.10 0.18 -1.12 -0.08 

Rail Fare  Business 0.07 0.07 0.07 -0.72 -0.04 
Private 0.04 0.07 0.06 -0.59 -0.05 
Total 0.05 0.07 0.06 -0.61 -0.05 

Income Business -0.59 -1.57 6.48 1.50 2.15 
Private 0.25 0.34 0.42 0.35 0.29 
Total 0.11 0.13 3.85 0.60 0.72 

 
The fuel price elasticity on car travel is low, around -0.14, and very similar to 
what is reported by Rohr et al. For all car trips, of which the vast majority is 
regional trips, many studies have found a long-run fuel price elasticity of around 
-0.3 (Goodwin et al., 2004; Graham & Glaister, 2004; Dargay, 2010). This is also 
what is found in Sampers' regional models. Dargay (2010) also finds a lower 
elasticity for long-distance trips than for regional trips (about -0.2). In summary, 
the direct elasticities reported in Table 3 are well in line with other studies using 
cross sectional data.  
 
Cross-elasticities for travel time are consistently higher for car than for rail. This 
is because a general property of nested logit models is that an improvement of an 
alternative in a nest will have the same proportional impact on the probability of 
all other alternatives in the nest, and this impact is proportional to the market 
share of the improved alternative. Nesting structures with air, rail and coach in 
the same nest, which would imply higher cross-elasticities between these modes, 
have been explored but were not supported by the data (Beser Hugosson, 2003).  
 
The income elasticities on car and coach trips are considerably lower than what 
is typically reported for trip generation Dargay (2010), which can be explained 
by the fact that these elasticities take into account the possibility to adapt not 
only by changing trip frequency but also by changing mode or destination. For 
business trips, coach and car income elasticities are even negative, because at 
higher income car and coach trips are substituted by air or rail. Interestingly, 
Dargay (2010) found a similar pattern as found here: lower income elasticity for 
car and coach than for air and rail. 
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High Speed Rail Forecast 
The Swedish Transport Administration has used the official Sampers long-
distance model (referred to as Sampers in the rest of this paper) to forecast the 
effects of a proposed HSR rail track in the Stockholm-Gothenburg corridor. The 
thick line on the map in Figure 2 marks HSR track under evaluation (the 
conventional rail network is depicted with thinner lines). The travel demand has 
been forecasted in a HSR scenario and in a baseline scenario, the former with the 
new HSR investment and the latter without. Both scenarios refer to year 2020.  
  
In the baseline scenario the travel time of the X2000 trains is on average 3h 5m 
and there are 18 return trips a day. In the HSR scenario it is assumed that the 
travel time decreases to 2h 14m and the frequency increases to 24 double tours 
a day. The fare is assumed to be equal in both scenarios. There are also some 
slower conventional trains taking other routes in both scenarios not further 
discussed here. All trains stop at some intermediate stations, but since the 
number of people living in these towns is relatively small, we neglect these in 
this analysis. 
 

Figure 2: The evaluated HSR rail track in the Stockholm-Gothenburg corridor 
 
Since there are already a type of HSR in the corridor, the travel time gain from a 
new HSR track is relatively small, 28 percent. Table 4 summarizes the forecasted 
travel demand and market share in the 2020 baseline scenario and HSR scenario. 
According to the forecast the number of rail trips would increase by 40 percent 
or 0.63 million trips per year when the HSR track is introduced, of which 75 
percent are newly generated, 16 percent are diverted from air, and 9 percent are 
diverted from car and almost nothing from coach.  
 
The predicted market share for rail in the HSR scenario is 49 percent for all trips, 
which is close to the observed market share for rail in the Madrid-Seville 
corridors (COST318, 1998). Concentrating on the air-rail mode split only, the 
share of rail trips increases from 65 percent to 75 percent for all trips. For 
Madrid-Seville and London-Paris (where the HSR travel time is the same and in 
the Stockholm-Gothenburg case), the market share for rail is higher, about 80 
percent. 

Rail tracks 

Proposed HSR track 
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Table 4: Base line and forecast scenario 2020 

 RAIL AIR CAR COACH 

 Priv Bsn Tot Priv Bsn Tot Priv Bsn Tot Priv Bsn Tot 

Million trips per year 
Baseline 
scenario  

1.13 0.47 1.60 0.33 0.52 0.85 1.30 0.21 1.52 0.10 0.00 0.10 
HSR 
scenario 

1.45 0.78 2.23 0.31 0.44 0.75 1.27 0.19 1.46 0.19 0.00 0.19 
% change   29 67 40 -4 -16 -12 -3 -10 -4 -3 -11 -3 

Market share 
Baseline 
scenario 

0.40  0.39  0.39  0.11  0.43  0.21  0.45  0.18  0.37  0.03  0.00  0.02  
HSR 
scenario  

0.46  0.55  0.49  0.10  0.40  0.17  0.40  0.18  0.32  0.03  0.00  0.02  

 
 
From the numbers in Table 4 we may compute the demand elasticities for the 
HSR line using the formula (1), where demand Dm1 and Dm2 now are taken to be 
number of rail trips and xm1 and xm2 are taken to be the rail travel time in the 
baseline and the HSR scenario. The direct elasticity on number of rail trips is -1.6 
for business trips, -0.78 for private trips and -1.0 for all trips. This is similar to 
the second phase of the opening of the Paris-Lyon HSR line (Nash, 2010), but 
lower than observed for the first phase of the opening of the Paris-Lyon line, the 
Madrid-Barcelona HSR line and the Madrid-Seville HSR line. The higher 
elasticities in the latter cases is likely due to the fact that the share of rail trips 
was initially much lower than in the Stockholm-Gothenburg case. The 
corresponding cross-elasticities with respect to air, computed by (2), are 0.14 for 
private trips, 0.54 for business trips and 0.38 for all trips.  
 
Recently a new long-distance model has been estimated based on the same data 
and basic model specification as the official Sampers model but applying Box-Cox 
transformations to the travel time and cost variables (see WSP Analysis & 
Strategy (2012)) for a detailed description of the estimation). This model is 
referred to as ‘the non-linear model’ in the following. The estimation showed 
clear evidence for non-linearity with Box-Cox parameters less than unity.  The 
non-linear model has also been used to forecast the effects of the Stockholm-
Gothenburg HSR track. Surprisingly, the total elasticity resulting from this 
forecast is only slightly higher than that resulting from the corresponding 
Sampers forecast: -1.15 (for all trips). The direct elasticity on number of rail trips 
is -2.1 for business trips, -0.77 for private trips and4. Moreover, the average 
elasticities computed in section 3.4 are similar between the models. 

Validation of the forecasts  
In this section, the air-rail mode split predicted by the Sampers model and the 
non-linear model, in response to the introduction of the HSR line, is validated 
against aggregate data. Specifically a relationship between the difference in 
generalized travel time between air and rail and the air-rail mode split found in 
aggregate traffic count data is estimated. The estimated relationship is then 
compared to the demand model of Sampers and the non-linear model using 
incremental logit. In the aggregate data all relations connecting Stockholm to 
another domestic airport are included. 

                                                 
4
 The corresponding cross-elasticities with respect to air are 0.15 for private trips, 0.71 for business 

trips and 0.34 for all trips. 
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Aggregate data 
The function describing the generalized travel time differences between air and 
rail in the aggregate data is denoted ����. This ���� includes the components 
in-vehicle travel time, access/egress time including an estimate of check-in, 
security, service, baggage delivery at the airports, first wait time and number of 
transfers. All travel time components are translated to the equivalent in-vehicle 
time using the relative weights of the national guidelines for cost-benefit 
valuations5. The difference in fare is not included explicitly in this function, but 
picked up by the constant, because the difference in average air and rail fare is 
relatively constant across trip relations6. Rail is, however, on average cheaper 
but slower than air, implying that the market share for air is higher for business 
trips than for the more price-sensitive private trips. For this reason, business 
trips and private trips are analyzed separately.  Aggregate traffic volumes for 
2007 were obtained from the rail operators and Swedavia Swedish Airports.  

Estimation result 

A relationship between ���� and air-rail mode split was estimated on the 
aggregated data by applying exponential regression. The reason for choosing an 
exponential function (truncated at 100 percent), as opposed to a logit model, is 
that it reaches 100 percent and can therefore pick up the effect that air service 
reduces or vanishes in travel relations where rail becomes very competitive. The 
estimated exponential functions for private and business trips are plotted as 
continuous lines in Figure 3 and Figure 4 (‘Exponential model’ in the figures). 
The parameters of the exponential function are shown in Table 5. The 
aggregated trip volumes used in the estimation of the exponential function are 
marked by dots in the same figures7.  
 

Table 5: Exponential models explaining how air-rail mode split depends on 
difference in generalized travel time.  
 Business trips Private trips 

Nr. Obs. 23  23  
R-squared: 0.849  0.877 

 
 

 
 

Estimate Std. Error T-value Estimate Std. Error T-value 
Intercept -0.129  0.034679 -3.732 -0.6837 0.0572 -11.96 

Δ�� -0.003 0.000255 -10.884 -0.0069 0.00056 -12.33 

 
The figures also include the Sampers demand functions applied as an 
incremental logit model (‘Incremental logit Sampers’ in the figures). The 
incremental model is calibrated based on the present rail-air split in the 
Stockholm-Gothenburg corridor and the corresponding difference in generalized 
travel time ∆GTTSG (given in minutes of rail in-vehicle time). The share of rail 
trips is denoted RSG, and equals 0.29 for business trips and 0.73 for private trips 
(‘Stockholm-Gothenburg Base scenario’ in the figures) according to the aggregate 
trips volumes8. ∆GTTSG is 47 minutes for business trips and 48 minutes for 

                                                 
5
 A detailed description of the computation of ���� is available on request from the author. 

6
 Average domestic flight ticket price is almost independent of the trip distance. Average rail fares are 

more strongly related to the trip distance but the impact is limited. For instance, the price of a normal 

ticket Stockholm - Malmo is less than twice the price Stockholm - Linkoping, although the distance is 

three times as long.  
7
 Traffic counts are available on request from the author.  

8
 Note that this air-rail split does not correspond exactly to the Sampers forecast in Table 4, partly 

because Sampers is not calibrated perfectly and because Table 4 refers to a forecast for 2020. 
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private trips. The share of rail trips (of the total number of air and rail trips) in a 
relation is then predicted by the incremental logit function: 
 

 �(����) = 	
���� 

���� !����
=	

"#$%�&('(()**+()**#$))

(�+	"#$)!"#$%�&('(()**+()**#$))
,  

 
where ,-./0 and ,./- are the market share for rail and air and β is the parameter 
corresponding to in-vehicle time for one-day trips in Sampers. The incremental 
non-linear models are plotted in the same figures (‘Incremental non-linear 
model’). Note, however, that for private trips the Sampers and the non-linear 
model do not include identical trips (the latter includes commuting trips in a 
separate model), so the non-linear model just serves as an illustration in this 
case. The figures also depict the air-rail mode split of the linear Sampers forecast 
(‘HRS scenario’), assuming that the rail travel time decreases by 51 minutes (in-
vehicle travel time decreases from 3h 5m to 2h 14m). This would imply that 
∆GTTSG become -4 minutes for business trips and -3 minutes for private trips.  
 
Figure 3 suggests that the Sampers model for business trips has a rather good 
model fit, as long as the share of rail trips is less than 60 percent. Above this 
point the curve fit is rather poor. As pointed out by Gaudry (2008), this is a 
typical problem with the linear-in parameters logit model because the response 
curve is forced to be symmetric around the inflexion point at 0.5. The curve fit, 
compared to the ‘Exponential model’, for the non-linear model is better. For the 
part of the response curve relevant for this particular forecast, however, the 
slope of the Sampers and the non-linear response curves is similar, explaining 
why the forecasts with these models are similar (see section 4). 
 
Figure 4 shows that for private trips the fit of Sampers’ response curve, 
compared to the ‘Exponential model’, is not as good as for the business model, in 
particular for high market shares. Again, the non-linear model does considerable 
better, in particular for high market shares for rail. This curve should, however, 
not be compared to the Sampers curve in detail since the models do not include 
identical trips.  The forecasts of the two models are similar also for private trips 
(see section 4). 

  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2
0

0

-1
0

0 0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

R
a

il
-a

ir
 m

o
d

e
 s

p
li

t 

Generalised travel time difference  rail -air (min)  

Incremental logit Sampers

Exponential model

Aggregate data observations

Stockholm - Gothenburg, Base scenario

Stockholm - Gothenburg, HRS scenario

Incremental non-linear model



15 
 

Figure 3: Share for rail travel, R, as function of generalized travel time difference 

between air and rail, ∆GTT, business trips.  

 
Figure 4: Share for rail travel, R, as function of generalized travel time difference 

between air and rail, ∆GTT, private trips.  

 
According to this forecast the market share for rail increases from 29 percent to 
46 percent for business trips and from 73 percent to 78 percent for private trips 
when the HRS line is introduced9. According to the exponential model, the 
market share for rail would be similar for business trips by higher, 88 percent, 
for private trips. Assuming that the direct elasticity is about right in Sampers this 
implies that the linear forecast model underpredict the reduction of air travel by 
176 000 air trips per year (which is about 16 percent of the total current number 
of air trips). An important point to make here is that the incremental logit does 
not take into account the effect that the frequency of air service decreases when 
rail becomes more competitive. Taking this into account in a second step is, 
however, not the main reason for the underprediction. 
 
Using the relative number of business and private trips for Stockholm-
Gothenburg, the effect on the total air-rail splits can be computed10. According to 
the exponential model, the rail share increases from 55 to 71 percent and 
according to the linear incremental Sampers model the rail share increases from 
55 to 67 percent. Hence, the exponential curve suggests that the total air-rail 
split is underestimated by four percentage points in the forecast. Even a 71 
percent market share for rail is lower than for Madrid-Seville and London-Paris, 
with about the same rail travel time. The higher share for air could be due to the 
fact that the small airport located within the City of Stockholm is very 

                                                 
9
 

 
This corresponds well to the increase from 78 percent to 82 percent for private trips and from 47 

percent to 64 percent for business trips, as predicted by the forecast carried out with the differently 

calibrated Sampers model for 2020, described in Section four. The modal splits presented in this 

section are consistent with, and could have been derived from the elasticities and cross-elasticities 

computed from the full but differently calibrated Sampers forecasts in Section four. 
10

 Business rail 304.039 trips; Business air 733.622 trips; Private rail 1.078.653; Private air 389.750 

trips.  
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competitive, with high accessibility and fast check-in, security, service and 
baggage delivery11. 

Conclusion 
It is often questioned whether state-of-practice forecasting models can predict 
the demand for HSR. The purpose of the present paper is to investigate this issue 
by reviewing elasticities from long-distance models in the literature and 
compare these with elasticities observed when new HSR lines have opened. This 
paper also validates the official Swedish state-of practice model (Sampers) and a 
new non-linear long-distance model applying box-cox transformations with 
aggregate Swedish data on air-rail mode split in different relations. 
 
The elasticities of long-distance models estimated on cross-sectional data in the 
literature tend to be lower than the elasticities observed when the HSR lines in 
Madrid-Barcelona, Madrid-Seville and the first phase of the Paris-Lyon HSR line 
were opened. The high observed elasticities are, however, likely a result of very 
long initial rail travel times, in particular in the Spanish corridors.  
 
The direct travel time elasticities implied by Sampers are well in line with or 
above those reported from other studies based on cross-sectional data. A similar 
UK model produces average elasticities in the same range. The non-linear model 
produces, as expected, even slightly higher elasticities than linear-in-parameters 
Sampers. The direct elasticity of in-vehicle travel time on travel demand in 
response to a proposed HSR line in the Stockholm–Gothenburg corridor is -1.0 in 
the Sampers model and -1.15 with the non-linear model, which is similar to the 
second phase of the opening of the Paris-Lyon HSR line (Nash, 2010). This is a 
relevant comparison, since the rail alternative is rather good also without a new 
HSR investment in this corridor, which indicates that at least the Swedish models 
predict credible elasticities.  
 
The air-rail split of the HSR corridor Stockholm-Gothenburg predicted by 
Sampers and the non-linear model is relatively consistent with the aggregate 
data for business trips. The model fit in comparison to aggregate data is in 
general slightly better for the non-linear model than for the Sampers model, in 
particular for relations with high share of rail trips. Still, the demand forecasts 
for the proposed HSR line in the Stockholm–Gothenburg corridor are similar for 
Sampers and the non-linear model.   
 
The Sampers model seems to underpredict the elasticities for private trips, in 
particular for high market shares. This is likely an effect of too low cross-
elasticity of air demand to rail travel time, since the direct elasticities are 
consistent with earlier experiences and since cross-elasticities are more difficult 
to model. The model fit in comparison to aggregate data is seems, however, to be 
better for the non-linear model also for private trips, in particular for relations 
with high share of rail trips. 
 
In general the problems of forecasting such shifts in technology that HSR 
represents do not seem to be large, because the variability of travel time in the 
                                                 
11

 Another reason may be that many travelers feel see-sick on rail.  In an interview among domestic 

air passengers 45 percent state that they at least sometimes feel sick on X2000 and 11 percent state 

that this affect their mode choices (WSP Analysis & Strategy, 2012).  
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cross-sectional data is much larger than the shift due to HSR. If travelers view 
HSR as a completely new travel mode, and not just as a fast train, the demand 
effect is more unpredictable. There are, however, not any evidences suggesting 
that this is the case. It would be interesting to apply these models to a recently 
opened HSR line elsewhere to verify this. 
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