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Abstract 

The standard method of estimating the value of travel time variability for use in 

policy appraisal is to estimate the parameters of a reduced-form utility function, 

where some measure of travel time variability (such as the standard deviation) is 

included. A problem with this approach is that the obtained valuation will in 

general depend on the standardized travel time distribution, and hence cannot be 

transferred from one context to another. A recently suggested remedy of this 

problem has been to estimate a scheduling model, which in theory is 

transferrable, and use the implied reduced-form to derive valuations for use in 

appraisal. In this paper we estimate both a scheduling model and the implied 

reduced-form model, using stated choice data. The valuation of travel time 

variability implied by the scheduling model turns out to be substantially smaller 

than what is obtained from a reduced-form model estimated on the same sample. 

The results suggest that the scheduling model does not capture all of the 

disutility arising from travel time variability. Hence, although it can be shown 

that scheduling and reduced-form models are “theoretically equivalent”, that 

hypothesized equivalence is not reflected in the empirical evidence. We speculate 

that the derivation of reduced-form models from an underlying scheduling model 

omits two essential features: first, the notion of an exogenously fixed “preferred 

arrival time” neglects the fact that most activities can be rescheduled given full 

information about the travel times in advance, and second, disutility may be 

derived from uncertainty as such, in the form of anxiety, decisions costs or costs 

for having contingency plans. We also report our estimates of the valuation of 

travel time variability for public transit trips, for use in applied appraisal. 
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1 INTRODUCTION 

In recent years, the reliability of transport systems has attracted increasing attention 

both from researchers and policy-makers. A rapidly growing body of research 

literature addresses measurement and valuation of travel time variability, and the goal 

of enhancing reliability seems to take an increasing priority for policy-makers. For 

example, the Netherlands has introduced reliability as a goal for its transport policies, 

and the Swedish Government recently declared that more efforts and resources need to 

be spent on reliability, at the expense of funding for new investments. The importance 

of reliability is perhaps most apparent in the public transit system: it is now standard 

that transit operators regularly publish statistics on reliability. 

In the analysis of travel time reliability, there are two principally distinct approaches: 

first, the “scheduling approach”, where the traveller’s departure and arrival time 

preferences are made explicit in the model; and second, what may be described as the 

“reduced-form approach”, where some statistical measure of the travel time variability 

is introduced directly in a reduced-form indirect utility function. While a scheduling 

approach is often the natural choice for forecasting purposes (e.g. modelling departure 

time choices), the reduced-form approach is usually the only feasible alternative for 

appraisal and evaluation purposes. As a measure of the variability in the reduced-form 

function, most studies have used either the standard deviation of the travel time or the 

average delay relative to scheduled arrival time, although some studies include both 

(Bates, Polak, Jones, & Cook, 2001; Batley, 2007), while some studies use percentiles of 

the travel time distribution (Lam & Small, 2001). When the standard deviation is used as 

the variability measure, the approach is usually termed the “mean-variance” approach. 

Reduced-form approaches can be derived from an underlying scheduling model, 

assuming that travel times follow a known random distribution and that travellers 

choose their departure time optimally to account for this randomness. This connection 

between the two approaches has provided a theoretical underpinning for the use of 

reduced-form approaches in applied appraisal. However, the reduced-form approach 

has two potentially important drawbacks. First and foremost, an estimated valuation 

from a reduced-form model will in general depend on the specific travel time 

distribution – not just on its general properties such as its standard deviation1. This 

means that a “value of standard deviation” obtained in one circumstance, using a 

particular distribution, cannot easily be transferred to another context where the 

standardized travel time distribution has a different shape. This relationship has been 
properly characterized only recently, in Fosgerau and Karlström (2010), even if the 

insight had been pointed out earlier (Bates, Black, Fearon, Gilliam, & Porter, 2002). 

Second, estimating reduced-form models rests on the possibility to present travel time 

distributions to respondents in a stated choice experiment, and then having them 

indicate which they would prefer. The problem of presenting travel time distributions 

comprehensibly to respondents has proven difficult – especially since the valuation will 

depend on the shape of the tail of the distribution, so it is important to convey enough 

information about the “far end” of the distribution to the respondent. 

                                                             

1 However, there are some scheduling models that result in reduced-form models that are independent 
of the standardized travel time distribution. The Vickrey (1973) model analyzed by Fosgerau and 
Engelson (2010) and used in this paper is an example of this.  
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These two arguments have recently led researchers to discuss an alternative to the 

current practice of how valuations of travel time variability are estimated. Rather than 

estimating marginal valuations in a reduced-form expression directly, one should 

perhaps estimate a scheduling model first, and then derive a reduced-form valuation 

that can be used for appraisal, given the relevant travel time distribution in each 
applied context (see Bates  (2009) for a review of these discussions). This solves, in 

principle, the two problems with the reduced-form approach – its dependence on the 

specific travel time distribution, and the need to present travel time distributions to 

respondents – while maintaining its main strength: that one does not need to model 

travellers’ choices explicitly, nor use information about the distribution of preferred 

arrival times. The possibility to explicitly derive a reduced-form approach from a 

scheduling model for any given travel time distribution was made possible by a 

groundbreaking paper by Fosgerau and Karlström (2010). This was followed up by 

Fosgerau and Engelson (2011), who give an analogous derivation using a different 

scheduling model.   

To be sure, this potential equivalence between the reduced-form and scheduling 

approaches rests on some strong assumptions. Most importantly, it assumes that 

travellers optimize their travel choices so as to maximize utility, and that under 

uncertainty they have accurate perceptions of the probability distributions. Some 

important contributions to econometrics have identified deviations from such utility-

maximizing behaviour: for example, a substantial body of research has found 

systematic misperceptions of risk levels, and in particular that very small risks are 
overweighed (Lichtenstein,(1978); Morgan et al., (1983); Hakes and Viscusi, (2004); 

Burns et al., (2010)). However, findings so far in travel behaviour have shown that such 

misperceptions are likely to be less of a problem when travellers have gained 

substantial experience from similar trips (de Palma et al., 2008). Since this paper focuses 

on daily commute travel behaviour, one can reasonably assume that most travellers 

have a substantial amount of experience making the same trip.  

The main focus of this paper is on testing the transferability between the scheduling 

and reduced form approaches. We conduct such a test on two alternative specifications 

of scheduling preferences, one with a step function for marginal utilities and another 

with sloped marginal utilities. We have collected stated choice (SC) data from 

respondents making a public transit trip. Respondents participated in two different 

binary choice experiments relating to the observed trip, one for estimating a scheduling 

model and one for estimating a reduced-form model. Theoretically, the two models 

should be possible to “translate” into each other: the estimated parameters of the 

scheduling model imply specific values of a reduced-form function, which should then, 

in principle, coincide with the parameters estimated directly in the second stated 

choice experiment. If that is indeed the case, then this opens up a way to circumvent the 

problems with the reduced-form approach. On the other hand, if the two estimated 

models are not consistent, then this means that one of the assumptions underlying the 

equivalence between these two approaches is flawed. For example, something could be 

missing from the underlying derivation of the reduced-form expression, and in that 

case one needs to understand why and how our theory deviates from how travellers 

actually make travel choices. 

The possibility that scheduling models might not be able to capture the entire disutility 
of travel time uncertainty has been observed before. Noland et al. (1998) hypothesize 

that the pure nuisance of not being able to plan activities precisely could, in addition to 
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scheduling costs, play a role in understanding aversion to travel time uncertainty. They 

denote this possible additional cost a “planning cost”. However, they do not investigate 

the precise relationship between “scheduling” and “uncertainty” costs, primarily 

because the necessary theoretical framework was not available at the time.   

In order to test the consistency of the scheduling and reduced form models, we 

consider two different scheduling models: one that we call the “step” model since the 

marginal utility of being at the destination has a “step” at the preferred arrival time, 

and another that we call the “slope” model since the marginal utilities of being at the 

origin and destination, respectively, change linearly over time. These two scheduling 

models imply different reduced-form expressions: the “step” model results in an 

indirect utility function containing the standard deviation of travel time (as shown by 

Fosgerau and Karlström, 2010), while the “slope” model gives an indirect utility 

function containing the travel time variance (as shown by Fosgerau and Engelson, 

2011).  

Beyond the theoretical equivalence of the scheduling and reduced-form models, our 

findings also have implications for putting new practices into perspective. Historically, 

different measures of travel time variability were introduced for appraisal purposes in 

a rather ad-hoc manner, without any proper theoretical motivation. The current 

theoretical motivation, that variability measures such as standard deviation or variance 

can be formally derived from scheduling models, is a fairly recent insight2. However, to 

our knowledge there have been no investigations into whether the theoretical 

equivalence between the two approaches holds empirically, i.e. whether the valuation 

implied by a certain scheduling model coincides with the valuation obtained from the 

corresponding reduced-form model. If not, then this is a signal that one of the models 

captures something that the other does not, and it may be important to understand 

what this might be.  

The paper is organized as follows. Section 2 is devoted to explaining the relation 

between the scheduling and reduced-form approaches more precisely, hence making 

the research question more precise. In section 3, we present the survey data. The main 

estimation results are presented in section 4, followed by a discussion of their 

implications in section 5. Section 6 concludes.  

2 THEORY 

The setting of this work is the choice of departure time by travellers with a specific 

origin, destination, general time of day, and mode of travel. We conceptualize that 

travellers choose their departure times such that they maximize a utility function that 

reflects considerations such as lost time at the origin, lost time at the destination, the 

burden itself of time spent en route, and monetary costs. In cases where the travellers 

face uncertain travel times, we assume that they choose departure time by maximizing 

expected total utility. 

                                                             

2 The manner in which theory has trailed application here is rather similar to how the widely used 
“gravity models” were theoretically motivated only after a long period of practical application, 
through the work by Wilson (1967, 1970), Snickars and Weibull (1977) and several others. 
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The notion that the value of variability in travel times can be tied to scheduling 

decisions is an extension of the idea that the value of a travel time saving derives 

largely from the opportunity cost of foregoing other activities. Vickrey (1973) expressed 

this idea in terms of flexible functions for the marginal utility of time spent at the origin 

and at the destination, respectively. The idea was re-introduced and elaborated by 

Tseng and Verhoef (2008), and subsequently applied by Jenelius et al. (2011).  

Denote the marginal utilities of being at the origin and at the destination, relative to 
time spent travelling, with ℎ(�) and �(�), respectively, where � is clock time. Without 

loss of generality the marginal value of time spent travelling is normalized to zero. 

Then, we can express total utility as the accumulated utility of time spent at the origin 

and, subsequently, time spent at the destination as: 

�(�, 	) = � ℎ(�)���
 + � �(�)����  (1)  

Here, � and � are arbitrary beginning and end times of the analysis time period of 

interest (spanning the range of possible departure and arrival times), and � and 	 are 

the respective times of departure and arrival. In the following, we normalize the total 
utility level by taking the relative utility �(�, 	) = �(�, 	) − �(0,0), where	�(0,0) =� ℎ(�)���
 + � �(�)���� . This way we can evaluate � in terms of bounds at zero, rather 

than at � and �: �(�, 	) = −� ℎ(�)���� − � �(�)���� . In particular, �(0,0) =−� ℎ(�)���� − � �(�)���� = 0. What form the functions ℎ(�) and �(�) take turns out to 

be critical for the development of the analysis. To motivate taking a trip, it must at least 

be the case that at some point in time �(�) exceeds ℎ(�). Both �(�) and  ℎ(�) must be 

positive to make the value of a travel time saving positive.  

In our analysis, we take two alternative specifications of the general form given in (1). 

First, Tseng and Verhoef (2008) illustrated that the general form above can be 

restricted to give rise to the well-known scheduling model that Small (1982) defined, 

based on earlier work by Vickrey (1969). This constitutes what we term the “Step 

Model” due to the step-function taken on by the marginal utility of time spent at the 

destination. Section 2.1 describes the Step Model, and derives the corresponding 

reduced-form expression (i.e. the maximal total expected utility, assuming optimal 

choice of departure time). This expression turns out to be a weighted sum of the 

expected travel time and an expression including the standard deviation of the travel 

time. The second specification we use is termed the “Slope Model”, and is based on 
Fosgerau and Engelson (2011) and Vickrey (1973), who take the functions ℎ(�) and �(�) to be linear functions of clock time. Section 2.2 describes the Slope Model, and 

derives the corresponding reduced-form expression. This expression turns out to be a 

weighted sum of the expected travel time, its square, and the variance of the travel 

time. 

2.1 The “Step Model” 

The first scheduling model draws from Vickrey (1969) and Small (1982), as adapted by 

Fosgerau and Karlström (2010) and Tseng and Verhoef (2008). Assume that the 

functions ℎ(�) and �(�) are as follows: 

ℎ(�) = � �(�) = �� − � � ≤ 0� + � � > 0 
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The total utility becomes the well-known Vickrey-Small scheduling model:  

�(�, 	) = −�(	 − �) + �min(0, 	) − �max(0, 	). (2) 

The specification rests on the assumption that there is a specific point in time when the 

marginal utility of being at the destination suddenly increases (presumably because 

some scheduled activity starts then). This point is often called the “preferred arrival 

time” (PAT). Without loss of generality, we can normalize PAT to �	 = 	0 as in (2). We 
refer to this model as the “step” model due to the shape of �(�).    
The marginal utilities in (2) can be interpreted in comparison to time spent elsewhere: � > 0 for time spent at the origin rather than travelling, � > 0 for time spent at the 

destination before the PAT rather than spent at the origin, and � > 0 for time spent at 

the destination after the PAT rather than spent at the origin. For consistency, it is 

necessary that all parameters are positive and that � < �. This will give the following 
order of the marginal utilities: at the destination after the PAT (� + �) 	> being at home (�) > at the destination before the PAT (� − �) > travelling (0). The step model is 

represented graphically in Figure 1. The shaded areas represent the total utility 

function (2), i.e. the integral of the marginal utilities.  

 

Figure 1. Marginal utilities of the Step Model. The shaded areas show the total utility as defined in 

(1) and (2).  

 Reduced Form 

Now, assume that the travel time $ is random, distributed as $	∼	µ	 + 	σ%, where % is a 

standardized random variable with mean 0, standard deviation 1, density φ and 

cumulative distribution Φ. If the traveller can choose departure time � freely and the 
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distribution of $ is independent of �, then it can be shown (Fosgerau and Karlström, 

2010) that the optimal departure time �∗ is: 

�∗ 	= argmax� [+,−�(	 − �) + �min(0, 	) − �max(0, 	)-] = −µ− σΦ/0 11 − 33456 (3) 

The maximal expected total utility becomes: 

�∗ = max� [+,−�(	 − �) + �min(0, 	) − �max(0, 	)-]  = −�µ− (� + �)7 � 8/0(9)�900/ ::;<  	
= −�µ− =(� + �)> 18, 33456?7 (4)

 

 

The last formula is the reduced-form expression corresponding to the “step” scheduling 

utility function: it is the maximal utility achieved assuming optimal choice of departure 

time. Note that this is the commonly used “mean-variance” expression, where the 

utility depends on a weighted sum of the mean and standard deviation of the travel 

time. But the reduced-form expression also depends on >, a functional depending not 

only on the parameters β and �, but also on the standardized distribution Φ  – more 

specifically, the shape of the tail of Φ/0 beyond 1 − 3345.The quantity > can be termed 

the “mean lateness factor”, since it is the mean lateness conditional upon the traveller 

arriving after the PAT. 

In the second stated choice experiment, we will use a particularly simple travel time 

distribution, namely the binary distribution where the travel time is @ with probability 1 − A and @ + B with probability A. In other words, there is a delay of length B with 

probability A. In this case, the reduced-form expression (4) becomes3 (see Appendix A): 

�∗ = C −�@ − [(� + �)A]B if 3345 ≥ A (Case	I)
−�@ − [� + (� − �)A]B if 3345 ≤ A (Case	II). (5) 

For any particular individual facing a particular risk of delay, we see one of these two 

cases depending on whether 
3345 ≤ A. In Case I, an individual with a low cost of arriving 

late, relative to arriving early, will maximize utility by choosing a later departure, while 

in Case II, an individual with relatively high cost of arriving late will optimize by 

choosing an earlier departure. For a population, there is likely to be a mixture of 

relative utilities, resulting in a mixture of Cases I and II.  

The first stated choice experiment involves deterministic departure and arrival times, 

and from this we will estimate the parameters α, β and γ in the scheduling model. In the 

second stated choice experiment, travel times are random (since delays occur with 

some probability), and from this we will estimate a reduced-form expression with a set 

of parameters J on the form 

                                                             

3 Note that while Fosgerau & Karlström (2010) assume a continuous distribution, the same result 
emerges from the discrete distribution we have chosen. We show this in Appendix A, and a general 
result has been shown by Hjorth (2010). 
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� = −θ0@ − θKAB (6) 

If the step model correctly describes travellers’ choices, then we should get θ0 	= � and 

either θK 	= 	� + �	if 3345 ≥ A or θK = � + � 10L − 16	if 3345 ≤ A. Evidently, the scheduling 

model predicts that the θK parameter should vary with A. We will therefore estimate 

separate θK	variables for the four different risk levels p1-p4 in the experiment: 

� = −J0@	 − MJKA1 + JKA2 	+ JKA3 + JKA4QAB               (7) 

The parameters J2LR − J2LS capture a mixed effect of the two parts of (5), depending on 

the relative portions of the population that fall under each case.  It can be shown that 
the θK parameters will be lower for higher risk levels (Börjesson & Eliasson, 2011). This 

means that if the step model correctly describes travellers’ choices, estimation results 

from the two choice experiments should give 

 � = θ0 and � + � = JKLR              (8) 

assuming that p1 is sufficiently small so 
3345 ≥ A0 holds. The first condition implies that 

the value of travel time savings should coincide in the two stated choice experiments. 

The second condition implies that the value of expected delay should coincide in the 

two experiments. 

2.2 The “Slope Model” 

Another specification of the general scheduling form, proposed by Vickrey (1973) and 

Tseng and Verhoef (2008) and analysed by Fosgerau and Engelson (2011), is to assume 

that the marginal utilities ℎ(�) and �(�) change linearly with time �:  

 ℎ(�) = �� + �0� (9) �(�) = �� + �0� (10) 

As before, the marginal utility of time spent travelling is assumed to be constant and 

normalized to zero. Without loss of generality, we can assume that ℎ(�) and �(�) 
intersect at time 0; �� is the common intercept at time 0. �0 is the rate of change of the 

marginal utility of spending time at the origin, and �0 is the rate of change of the 

marginal utility of spending time at the destination. For a trip to occur, we need only 

that �0 > �0; though it is natural to expect their signs to be opposites, �0 > 0 > �0. We 

refer to this model as the “slope” model. The model is represented in Figure 2, where 

the total utility is shown in the shaded areas. The relative utility given departure time d 

and arrival time 	 is4: 

�(�, 	) = −� (�� + �09)�9�� − � (�� + �09)�9�� =  −��(	 − �) − 5RK 	K + 3RK �K. (11) 

                                                             

4 This result is equivalent to the result from Fosgerau and Engelson (2010) except that they take the 
additional normalization that �0 = �0 − 1 and they measure utility in reference to an arbitrary early 
departure time and late arrival time, rather than to an ideal trip. 
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Figure 2. Marginal utilities of the Slope Model. Shaded areas show total utility. The figure is drawn 

assuming optimal departure time.   

As opposed to the Step Model, there is no natural “preferred arrival time”, when the 

marginal utility at the destination suddenly rises. Instead, the optimal arrival time (and 

consequently the optimal departure time) is determined by the condition that the 

marginal utility at the origin at the time of departure must be equal to the marginal 

utility at the destination at the time of arrival, such that utility is maximized. Given a 

fixed travel time $, the optimal departure time �∗ can be found by maximizing �(�, � + $) from (11) (Fosgerau & Engelson, 2011), which gives: 

�∗ = 5R3R/5R $	  (12) 

The corresponding maximal utility �∗ becomes: 

�∗ = −��$ − 5RK (�∗ + $)K + 3RK (�∗)K (13) 

In the first stated choice experiment, each choice alternative consists of some deviation Δ� in the departure time and some deviation Δ	 in the arrival time relative to the 

reference trip. Assuming that the reference trip was chosen optimally by the 

respondent, these deviations translate into a loss of utility Δ� relative to the reference 

trip. Using equations (11)–(13), the difference in utility between a stated choice 

alternative (Δ�, Δ	) and the reference trip becomes (see Appendix B for details): 

Δ�	 = 	− 1�� + �0 5R3R/5R ⋅ $6 ⋅ (V	 − V�) − 5RK ⋅ (V	)K + 3RK ⋅ (V�)K. (14) 
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Each stated choice question is a choice between two such Δ�’s. The travel time $ refers 

specifically to the travel time of the reference trip, and hence does not vary across choices 

in the experiment.  

 Reduced Form 

Now, assume that the travel time $ is a random variable, with +($) 	= 	µ and X	Y($) = 	σK. Fosgerau and Engelson (2011)5 show that the traveller’s optimal 

departure time �∗ is given by: 

�∗ 	= 5R3R/5R µ, (15) 

Note that this quantity is independent of σ; the optimal departure time given in (15) is 

the same as in the deterministic case (12), except that the deterministic travel time $ is 

replaced by the mean Z. The fact that the optimal departure time is independent of the 

variability of the travel time rests upon the assumption of linearly changing marginal 

utilities at the origin and destination. Fosgerau and Engelson also show that the 

maximal expected total utility becomes 

�∗ 	= 	−��µ	 − 3R5RK(3R/5R) 	µK −	5RK σK (16) 

Note that �∗ does not depend on the full distribution of $, only on its mean and 

variance, in contrast to what we found in the Step Model case.  

In the first choice experiment, we estimate the parameters ��, �0	and �0from (14). In 

the second choice experiment, we estimate the a set of parameters [ in the following 

reduced-form expression: 

�	 = 	−[0Z − [KZK −	[\7K (17)	
If the slope model correctly describes the respondents’ choices, the marginal utilities of 

mean travel time µ and variance σ2 should coincide between the two choice 

experiments. These marginal utilities are obtained by differentiating (16) and (17) with 

respect to µ and σ2, respectively. Hence, we should expect the following two conditions 

to hold:  

�� + 3R5R(3R/5R)Z = [0 + 2[KZ, and  
5RK = [\. (18) 

2.3 Summary of Scheduling Models 

Table 1 summarizes the Step Model and the Slope Model – their scheduling 

specifications, the implied reduced forms, and the hypothesized equivalences between 

the first and second choice experiments.  

                                                             

5 Our presentation differs slightly from Fosgerau and Engelson (2010) in that we do not, as they do, 
normalize the scale of utility such that �0 = �0 − 1; regardless, the presentations are equivalent. 
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Table 1. Matrix of scheduling models, their reduced forms, and hypothesized equivalences between 

choice experiments. 

  Model Specification 

  Step Model Slope Model 

Scheduling 

Preferences 

Marginal Utility 

at Origin 
Constant at � 

Linear with slope �0, 

intercept �� 

Marginal Utility 

at Destination 

Step function, jumping from � − � to � + � 

Linear with slope �0 > �0, intercept �� 

Reduced  

Form 

Utility Term for 

Mean Travel 

Time 

−�µ −��µ	 − �0�02(�0 − �0)	µK 

Utility Term for 

Variability 
−(� + �)7] 8/0(9)�90

0/ 3345
 −	�02 σK 

Hypothesized 

equivalences 

between choice 

experiments 

Equal value of 

travel time 

savings 

θ0 = � 

[0 +[KZ= �� + �0�02(�0 − �0) Z 

Equal value of 

travel time 

variability 

JKLR = � + � 

(for expected delay) 

[\ = �02  

(for variance) 

Note: Z is mean travel time, 7 is standard deviation of travel time, and 8 is the cumulative 

distribution of normalized travel times. 

 

In the first pair of rows, the table expresses the underlying scheduling preference 

functions that form the basis of the scheduling form utilities. In the second pair of rows, 

the corresponding reduced form utilities are expressed in terms of the parameters 

from the scheduling functions. The last pair of rows sets out the hypothesized 

equivalences between the two forms of expressing utilities under each underlying 

scheduling preference function, where the scheduling parameters are obtained from an 

experiment related to specified departure and arrival times, and the J- and [-

parameters are obtained from an experiment related to uncertain travel times. When it 

comes to testing these hypothesized equivalences using our two stated choice 

experiments, note that the parameter scales on either side of the equality are likely to 

differ, so the parameters cannot be compared directly across models. Rather, we will 

compare ratios between parameters, for example by dividing with the cost parameters 

of the respective models. 

3 THE DATA 

3.1 Survey method 

The data originate from a stated choice study administered to travellers on the metro 

and commuter trains going toward and away from the centre of Stockholm city during 

the morning and afternoon peak periods. The respondents were recruited at selected 

stations on Monday-Thursday from 7-9 am and 4-6 pm during one week of October 

2009. The respondents received questionnaires along with a pen and a stamped 

envelope. They were asked to fill in the questionnaire during the journey or shortly 
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afterwards and to mail back the survey. In total, 3200 questionnaires were distributed, 

and the final data set comprised 1260 respondents, giving a response rate of 39%. 

The questionnaire began with questions about the observed trip (travel time, start 

time, constraints at origin/destination, transfers, safety margins (defined as the 

difference between the time constraint at the destination (if any) and the scheduled 

arrival time), frequency of delays etc.), partly to remind respondents about the 

circumstances of this particular trip.  

The second part of the questionnaire comprised two different sets of binary stated 

choice experiments related to their actual journey. The first experiment was designed 

to estimate a scheduling model with non-random time deviations from the actual 

journey. The alternatives differed in three dimensions: fare, start time and travel time. 

As a consequence of the last two variables the alternatives also differed with respect to 

arrival time.  

The second choice experiment was designed for estimating a reduced-form model, 

where the binary choices differed in delay length, delay risk, scheduled travel time 

(without delays) and fare.  Hence, we present a binary travel time distribution to the 

respondents, where the travel time is @ with probability 1 − A and @ + B with 

probability A.  

In both experiments, the option to cancel the trip was also offered.  In the estimation, 

the “cancel the trip” observations were first included, applying nested models with the 

choice of whether to accept any of the alternatives at the upper level and the choice 

between the right-hand and left-hand side at the lower level. This did not change 

parameter estimates for the scheduling model, while it almost doubled the value of 

delay time in the reduced-form models. This seemed to be because some respondents 

abstained from the trip once there were high delay risks. Due to a number of internal 

consistency problems with these model specifications, “abstain” answers were 

eventually dropped from the estimations. Examples of the binary choices are shown in 

Figure 3 and  
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   Departure 1 Departure 2  

       

 Delay (if 
you made 
this trip 
every day): 
 

 
Once every other month, the 

train is 45 min delayed.                                 

All other trips are on-time. 

Once every other week, the 

train is 10 min delayed. 

All other trips are on-time. 

 

 Travel time 

according to 

the 

timetable: 

 

3 min shorter than today 10 min shorter than today 

 

 Ticket price  €0.20 higher than today €1.00 higher than today  

      

 I choose 

väljer: 

 � 1 � 2  

   Cancel the trip � 3  

 

Figure 4. Each questionnaire contained four binary choices from each of the two 

experiments. 
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   Departure 1 Departure 2  

      

 
Start Time 

 
25 min later than today 5 min later than today 

 

 Travel Time  15 min longer than today 45 min longer than today  

 Ticket Price  €0.70 higher than today €0.40 lower than today  

 Arrival Time  (40 min later than today) (50 min later than today)  

      

 I choose 

väljer: 

 � 1 � 2  

 
  Cancel the trip � 3  

 

Figure 3: Survey question, choice experiment 1 

   Departure 1 Departure 2  

       

 Delay (if 
you made 
this trip 
every day): 
 

 
Once every other month, the 

train is 45 min delayed.                                 

All other trips are on-time. 

Once every other week, the 

train is 10 min delayed. 

All other trips are on-time. 

 

 Travel time 

according to 

the 

timetable: 

 

3 min shorter than today 10 min shorter than today 

 

 Ticket price  €0.20 higher than today €1.00 higher than today  

      

 I choose 

väljer: 

 � 1 � 2  

   Cancel the trip � 3  

 

Figure 4: Survey question, choice experiment 2 

3.2 Experimental Design 

An orthogonal pivot design was used for the two choice experiments. For both 

experiments, the difference between each of the factors in the binary choice 

alternatives was constructed using an orthogonal design table with 16 rows and one 

column for each factor. As explained above, the first experiment included three factors 

and the second four factors. In both experiments, all factor differences took four levels. 

The absolute level of each factor facing the respondents took many more levels, but this 

is irrelevant in the estimation. Simulation over a wide range of model specifications and 

parameter values, which also included the parameter values that were achieved in the 

pilot and the main study, was undertaken. This guarantees sufficient efficiency in 

parameter estimates and that the design can retrieves properties of the data assuming 

a variety of underlying model specifications.   
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Eight different questionnaires with eight choice situations (four for each of two 

experiments) were constructed. Each of these was also mirrored, such that the left and 

right hand alternatives were switched, to investigate whether there is a greater 

tendency to choose the left hand alternative; no such tendency was found in the 

analysis. The choice alternatives are summarized in Table 2. 

Table 2: Summary of the variables in the stated choice experiments. Departure, travel, arrival and 

travel time is given in [min] and fare in [€]6. All variables are pivot values, apart from delay length 

and risk. 

 Min. Mean Max. 

Departure time, exp. 1  -45 -0.2 47 

Travel time, exp. 1 -6 9 45 

Fare, exp. 1 [€] -1 -0.1 1.5 

Arrival time, exp. 1 -49 9 50 

Travel time, exp. 2 -10 3.5 22 

Fare, exp. 2 [€] -0.5 0.4 1.2 

Delay length, exp. 2 5 25 70 

Delay risk, exp. 2 0.025 0.08 0.2 

 

3.3 Sample Statistics 

Table 3 and Table 4 summarize the descriptive statistics of the sample. The purpose at 

the destination was ‘work’ for 61 percent of the respondents and ‘home’ for 17 percent. 

The remaining 22 percent had some other purpose at the destination. 49 percent state 

that they had a time constraint at the destination. The mean door-to-door travel time 

was 46 minutes.  

For those respondents who had a specific time constraint at the destination, their 

scheduled arrival times were, on average, 15 minutes prior to that time constraint.  

Table 5 shows experiences of frequency of delays stated by respondents who make 

regular trips. The tabulated frequencies correspond to the levels of risk of delay 

included in the stated choice experiment, which according to the table are realistic. 

Table 5 also shows that about half of the respondents do not have a connection from 

the subway/commuter train to reach their final destination. The vast majority of the 

respondents having a connection have a connection with high frequency.  

                                                             

6 In this table and throughout the paper we have converted SEK to Euro using a conversion rate of 10 
SEK/€. 
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Table 3: Sample statistics for categorical variables. 

Shares of the total sample population  Shares of purposes at destination  

Travellers recruited on the subway 0.45 Work 0.61 

Travellers with constraint at the origin 0.20 School 0.06 

Travellers with constraint at the destination 0.49 Business 0.02 

Women 0.65 Shopping 0.03 

Children <13 years in the household 0.29 Recreation 0.03 

Employed 0.81 Other  0.08 

  Home trip 0.17 

 

 

Table 4: Sample statistics for continuous variables.  

 Min. 1st 

quartile  

Mean 3rd 

quartil

e 

Max. n/a 

Door-to-door travel time [min] 0 30 46 55 580 39 

Safety margin, travellers with 

constraint at destination [min] 

0 10 15 20 100 703 

Age [years] 18 34 44  55 87 69 

Monthly income before tax [€] 500 2250 2850 3750 7000 77 

 

Table 5: Stated frequency of delays and headway of connection to final destination, as shares of the 

total sample. 

Stated frequency of delays for regular trips  Headway of connection  

 Subway Commuter 

train 

< 5 min  0.17 

Once per week 0.14 0.19 10 min 0.15 

Every other week 0.13 0.15 15 min 0.13 

Once per month 0.18 0.26 20 min 0.04 

Every other month / 

less 0.30 0.25 

1 hour or more 0.02 

Not a regular trip 0.26 0.15 Don’t know 0.03 

   Don’t have a 

connection 

0.45 

4 ESTIMATION  

In this section, we present estimation results for the two scheduling models and the 

two corresponding reduced-form models. As explained in Section 2, we denote the two 
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scheduling models the “step model” and the “slope model”. In all of the estimations, we 

estimate binary logit models. The left-hand alternative is chosen if: 

�^ − �_ + ` ≥ 0 

where ` is taken to be an i.i.d. logistic error term and �^ and �a	are the measurable 

utilities of the left- and right-hand alternatives given in each survey question.  

4.1 Experiment 1: Scheduling models  

The step model specification was given in (2). Adding the travel cost b with a marginal 

utility of c, we estimate the utility function of the left and right hand alternative as 

follows:  

�(�, 	) = −�(	 − �) + �min(0, 	) − �max(0, 	) − cb, (19) 

where time 0 is taken to be the respondent’s actual arrival time. Respondents were also 

asked whether they had to be in time for anything specific at the destination, and if so, 

how much margin they had before that time. However, replacing the actual arrival time 

with this time yielded considerably worse estimation results. 

The slope model is defined by (13).  The utility function of the left and right hand 

alternatives represent the deviation from the reference trip. We assume that the 

reference trip (the trip on which the respondent was recruited) was the respondent’s 

optimal choice. Letting V� and V	 be the changes in departure time and arrival time 

relative to the reference trip, the change in utility Δ� becomes: 

Δ�	 = 	−(�� + �K$) ⋅ (V	 − V�) − 5RK ⋅ (V	)K + 3RK ⋅ (V�)K − cb, (20) 

where βK 	= βRγR
βR/γR  should hold theoretically according to (14).7 �� is a random 

parameter, different across individuals, that captures panel effects. Estimation results 

for the two scheduling models are found in Table 6. 

                                                             

7 Imposing the constraint βK 	= βRγR
βR/γR in the estimation causes 	�0 and 	γ0 to pick up intra-individual 

preference variation, since $ is the travel time of the reference trip and hence only varies across 
individuals, not across choices. A biased estimate of 	γ0 is a serious problem, since 	γ0 translates to the 
value of variance which will be compared to the corresponding value from the reduced-form model – 
the main purpose of this paper. Letting β� be a random parameter, constant within individuals, 
partially solves this problem, but the precision of the	γ0 estimate remains considerably worse than in a 
model where 	βK is estimated as a free parameter. For this reason, we have chosen to estimate	βK as a 
free parameter and β� as a normally distributed random parameter constant within individuals (which 

has the added benefit of picking up panel effects). Imposing the constraint βK 	= βRγR
βR/γR  does not 

change the conclusions of the paper; estimation results for this model are available on request from the 
authors. 
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Table 6: Estimation Results of the Scheduling Models. The values of time at destination and origin 

implied by the slope mode are computed as the average of the first 15 minutes of deviation from 

the reference situation.  All values of time are translated into €/hour. 

 
Step Model Slope Model 

Parameter (unit) Value t-stat Value t-stat 

λ (/SEK) 
0.8222 14.32 1.21 15.98 

α (/min) 
0.0919 17.19   

β (/min) 
0.0622 16.73   

γ (/min) 
0.0579 13.43   

Mean ��  (/min) 
  0.16 10.44 

Std dev ��  (/min) 
  0.0723 9.85 

�K  (/min) 
  -0.00016 -0.57 

�0 (/min2) 
  -0.00273 -10.61 

�0 (/min2) 
  0.000837 2.8 

Model Statistics Step Model Slope Model 

Observations 
3226 3226 

Final log(B) -1666.7 -1585.96 

No. Parameters 
4 5 

f²(0) 
0.255 0.291 

No. Draws 
 1000 

Value of early departure 

time 

αc = 6.7 
1c kβ� − 15β02 m 	= 	6.9 

Value of late departure time 
αc = 6.7 

1c kβ� + 15β02 m 	= 	8.9 

Value of early arrival time, 

average of the first 15 min 

α − β

λ
= 2.2 

1c kβ� − 15γ02 m 	= 	7.6 

Value of late arrival time, 

average of the first 15 min 

α + γ

λ
= 10.9 

1c kβ� + 15γ02 m 	= 	8.2 

 

All parameters have the expected sign and relative magnitude (β < α in the step model 
and β0 < γ0in the slope model). The slope model fits the data better than the step 

model: a multinomial logit slope model (i.e. not accounting for panel effects – this 
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model is not presented in the table) has a better likelihood than the step model (-

1620.2 compared to -1666.7), with the same number of parameters. The better model 

fit of the slope model stems from relaxing the step model’s restriction of constant 

marginal utility of time at the origin (relative to the marginal utility of travelling)8. This 

is also evident from the finding that �0 < −�0 in the slope model, implying that the 

marginal utility of time at the origin changes faster than the marginal utility of time at 

the destination. This indicates that some respondents have constraints at the origin 

that are less flexible than the constraints at the destination. In the step model, this is 

reflected by the finding that the � parameter is fairly small relative to the � parameter, 

meaning that the additional utility of being at the destination after the PAT, rather than 

being at the origin, is not very large.  

The valuation of marginal changes in the arrival and departure times are compared at 

the bottom of Table 5. These reflect the willingness to pay for moving the 

departure/arrival time backwards or forwards, keeping arrival/departure at the other 

trip end constant9. In the slope model, the valuations of marginal changes in the 

arrival/departure times are not constant: we have chosen to evaluate as the average 

valuation 15 minutes before and after the reference point, to make them reasonably 

comparable with the corresponding valuations in the Step Model. The difference 

between the valuations of an earlier and a later arrival is much larger in the Step Model 

than in the Slope Model; in other words, the slope of the marginal utility at the 

destination in the Slope Model does not nearly correspond to the jump in marginal 

utility of the Step Model. The difference is so large partly because of the Step Model’s 

restriction of constant marginal utility of time at the origin. This affects the other 

estimates because departure and arrival times are correlated, exaggerating the 

difference in utility between early and late arrival time (relaxing the restriction of 

constant marginal utility of time at the origin reduces the size of the jump in the 

marginal utility at the destination).  

The two scheduling models are illustrated and compared with an example in Figure 5. 

The figure depicts how the marginal utilities of the two models change with clock time 

as the traveller spends time at the origin, travels, and subsequently spends time at the 

destination. The example shows a traveller departing 30 minutes before PAT and 

arriving 10 minutes before PAT. The marginal utilities are expressed in monetary terms 

by dividing them with the respective cost parameter, to make them comparable 

between models10.  

                                                             

8 If estimating the step model without the restriction of constant marginal utility of time at the origin, 
the log likelihood value improves to -1596 which indicates a better model fit than the slope model 
estimated as an ordinary logit mode with log likelihood value -1620.2. 

9 These values are derived from the utility functions (19.) and (20.). The value of a change of 

departure time d is  
pqp� / pqps in the Step Model (using (19.)), and 

ptqpt� / ptqps  in the Slope Model (using 

(20.)). The value of a change of arrival time is 
pqp� / pqps in the Step Model, and 

ptqpt� / ptqps  in the Slope 

Model.  

10 In other words, they are computed as   
pqp� / pqps (Step Model) and 

ptqpt�	(Slope Model) at the 

destination, and  
pqp� / pqps (Step Model) and  

ptqpt� / pqps (Slope Model) at the origin.  
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Figure 5. Illustration of how the marginal utility of time changes with clock time in the Step and 

Slope scheduling models, assuming an example trip.  

Some travellers stated that they had constraints at the origin or destination. 

Interestingly, we could not find any differences in scheduling parameters between 

these respondents and respondents stating that they had no specific scheduling 

constraints. A possible interpretation is that most individuals have constraints to some 

extent, but these may seldom be absolutely “binding”. This interpretation would 

explain the better performance of the slope model, which does not assume binding 

constraints at specific points in time, but rather a gradually increasing or decreasing 

marginal utility of time. 

4.2 Experiment 2: Reduced-form models 

As explained in Section 2, the two scheduling models imply different reduced-form 

models, which are both estimated using data from the second choice experiment. 

Remember that we use a binary travel time distribution where the travel time is @ with 

probability	(1 − A), whereas a delay of length B occurs with probability A. This means 

that the travel time distribution’s mean µ and variance 7K are: 

Z	 = 	@ + AB;     σK 	= 	A(1 − A)BK. 

To estimate the reduced-form Step Model we apply               

 (7), estimating a separate parameter for each risk level A in the stated 

choice experiment,  θKLu�.�Kv ,θKLu�.�v ,θKLu�.0�	 and θKLu�.K�,  such that the utility function of each 

alternative becomes: 

�	 = −J0@	 − MJKA=0.025 + JKA=0.05 	+ JKA=0.10 + JKA=0.20QAB − cb, (21) 

The reduced-form expression corresponding to the Slope Model is specified in (17), so 

the utility function becomes: 

�	 = 	−[0(@ + AB) − [K(@ + AB)K −	[\A(1 − A)BK − cb, (22)	
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Estimation results are found in All parameters have the expected sign and relative 

magnitude. The θK parameters in the Step Model increase with the risk level, as 

expected, except for θKLu�.�v and θKLu�.0�, but these are not significantly different. The Step 

Model has two more parameters and somewhat better goodness-of-fit. The additional 

two parameters do, however, not significantly improve the model according to the χK 

test of parameter restriction. 

Table 7. All parameters have the expected sign and relative magnitude. The θK 

parameters in the Step Model increase with the risk level, as expected, except for θKLu�.�v 

and θKLu�.0�, but these are not significantly different. The Step Model has two more 

parameters and somewhat better goodness-of-fit. The additional two parameters do, 

however, not significantly improve the model according to the χK test of parameter 

restriction. 
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Table 7: Estimation Results of the two Reduced-Form Models. 

 Step Model Slope Model 

 Value t-stat Value t-stat 

λ  
1.07 6.9 1.54 13.7 

θ0 and [0 
0.107 5.4 0.095 4.6 

θKLu�.�Kv  
0.805 5.6   

θKLu�.�v  
0.634 6.8   

θKLu�.0�  
0.686 7.6   

θKLu�.K�  
0.565 8.8   

[K  
  0.0010 3.1 

[\ 
  0.0050 5.4 

 
   

 

Observations 
2996  2996 

 

Final log(B) -1781.58  -1783.4 
 

No. Parameters 
6  4 

 

f²(0)  0.1421  0.1412 
 

Value of travel time savings 

(€/h) 6.0  7.4 

Evaluated at 

p=0.08, L=25 

(design means) 

Value of expected delay 

(€/h):    

Evaluated at L=25, 

t=46 (design and 

sample means) 

A = 0.025  
45.1  22.8 

 

A = 0.05  
35.6  23.0 

 

A = 0.10  
38.5  23.4 

 

A = 0.20  
31.7  24.2 

 

 

The Step Model assumes that the disutility of a delay is linear in B. Intuitively, this 

might be unexpected – but in fact, this is supported by the estimation results. Testing 

various piecewise linear functions, we find no evidence that the marginal value of delay 

length varies with the delay length itself. 
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Table 7 also compares the value of scheduled travel time @ and the value of expected 

delay AB between the two reduced-form models. Using  we have that the value of 

scheduled travel time is: 

−1c x�x@ = J0c  

in the step model. From (22) we have that the corresponding value in the slope model 

is: 

−1c x�x@ = −[0 − [K ∗ 2(AB + @)c  

The latter depends on on A, B and @; it is evaluated at sample and design means  @ = 46, 

A = 0.08, B = 25. The values of scheduled travel time turn out to be similar in the two 

models. 

Meanwhile, the value of expected delay in the step model is: 

− 1
c

x�
x�AB� = JK

L

c  

in the step model, and in the slope model it is: 

− 1
c

x�
x�AB� = −[0 − [K ∗ 2�@ + AB� − [\�1 − 2A�B

c  

The latter is also evaluated at sample and design means. The slope model produces 

lower values of expected delay than the step model. If however, all θK’s in the Step 

Model are constrained to be equal, the value of expected delay becomes similar to that 

produced by the slope model. In other words, when the model does not allow the value 

of delay time to depend on A, the value decreases considerably, and this explains the 

relatively low valuation in the Slope Model.   

Just as in the scheduling models, the valuation of delays is not different for respondents 

which stated that they had arrival or departure time constraints. 

4.3 Other remarks on estimation results 

From the extensive testing of model specification that was carried out, the following 

observations can be noted: 

• There are no significant differences in scheduling parameters between morning 

and afternoon trips, or between different trip purposes.  

• There are only small differences in preferences between metro and commuter 

train travellers. The only significant difference is that commuter train travellers 

value time at the origin higher. A likely reason for this is that commuter trains are 

more crowded; the traveller’s door-to-door travel times do not differ between the 

models. This difference is only significant in the first experiment. This was not 

included in the final model, however.  

• People who stated that they had constraints on their arrival or departure time did 

not in fact have significantly larger scheduling parameters than the rest of the 
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respondents. Nor did people with constraint on their arrival have a higher 

valuation of expected delay. 

• The model using the observed arrival time as preferred arrival times gave a better 

model fit and response scale than alternative models where the arrival times were 

adjusted by respondents’ stated “safety margin” (if any).  

• Having a connecting trip leg at the end of the recruitment trip leg did not affect 

valuations.  

• Higher income attenuates the cost parameter.  

• Once income differences are controlled for, no gender differences are found.  

• Surprisingly, we found that parents of both sexes with children 12 years or 

younger have a higher valuation of time but not a higher valuation of expected 

delay or larger scheduling parameters. A reason might be that there are very few 

trips with purpose “fetch the children from day care” in the sample. 

• Employed persons have a higher valuation of lateness than the unemployed.  

• There is no significant constant for the left-hand alternative in any of the 

experiments. Hence, no tendency was found that respondents “cheated” on a 

difficult task by always selecting the same side.  

 

Mixed logit (MXL) models have been estimated, to ensure that the results are robust 

and to take panel effects into account.  In the first MXL model of the first experiment, all 

parameters were assumed to be normally distributed. The valuations, computed using 

the mean values of the parameters, remained robust as compared to the MNL model. 

There was no significant variation between individuals in the � parameter.  The largest 

random variation was found in the lateness parameter.  

Assuming normally distributed parameters, fairly large parts of the mass of the 

distribution of the parameters were positive.  To remedy this problem, the parameters 

were assumed symmetrically triangular and constrained to be negative.  This model, on 

the other hand, turned out unsatisfactory, resulting in very high valuations. 

Presumably, there is a significant mass close to zero, which is better accounted for by 

using the normal distribution. The option of using log-normally distributed parameters 

was not tested, since the valuations are normally sensitive to assumptions about the 

long and flat tail where the data do not cover the support of the distribution.   

Mixed logit models estimated for experiment 2 give the same results as for experiment 

1. The heterogeneity is largest for the expected delay parameters. The valuations are 

robust assuming normally distributed parameters. The triangular distributions give 

very high valuations that probably indicate misspecification.  

5 DISCUSSION 

Based on the estimation results in the previous section, we are now able to explore the 

transferability between the scheduling approach and the reduced-form approach using 

the relationships derived in section 2.1 and 2.2 and assessing the hypothesized 

equivalences from Table 1, which is the key issue of this paper. The empirical 

comparisons are shown in Table 8. Since the scale of the models (the variance of the 

error term) is likely to be different across estimations, it is not meaningful to compare 

the absolute parameter values, but rather the ratios between corresponding 

parameters from the same model.  For this reason we make the comparisons in 
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monetary terms (dividing by the cost parameter), or relative to travel time (dividing 

with the marginal utility of travel time). 

Section 2.3 summarized the conditions we expect to hold, if the results from the two 

choice experiments are consistent. For the Step Model, we should expect that θ0 	= � 

and θKLu�.�Kv 	= 	 (� + �). For the Slope Model, we should expect that [0 + 2[KZ = �� +2�KZ and [\ = 5RK . In making the comparisons, we evaluate each expression using at the 

sample mean values @ = 46, A = 0.08, B = 25 such that Z = 46 + 25 ⋅ 0.08. The 

resulting comparisons are presented in Table 8. 

Table 8: Parameter Comparisons Between Scheduling and Reduced-Form Specifications. All values 

are given in €/h. 

 Step Model Slope Model 

Hypothesized 

Equivalence 

Scheduling 

specification 

Reduced-form 

specification 

Scheduling 

specification 

Reduced-form 

specification 

Value of (expected) 

travel time savings:  

α

λ
= 	6.7 

θ0
λ
	= 	6.0 

3y43z{| = 7.6  11 [0 + 2[KZ
λ

	= 	7.4 

Value of expected 

delay: (� + �)∼	θKLu�.�Kv 

� + �
λ

= 10.9 � + �� = 1.6 

θKLu�.�Kvc = 45.1 

θKLu�.�KvJ0 = 7.5 

  

Value of variance: 

γ0/2	∼	[\ 
  

�02c = 	0.021 

γ0��+�KZ = 	0.0026 

[\c = 	0.19 [\[0 + 2[KZ = 0.026 

 

The first in each pairs of conditions suggests that the value of travel time savings 

should coincide in the scheduling model and the reduced-form model. As seen in Table 

8, the values of travel time savings are indeed very similar between the scheduling and 

reduced form models. This is true for both the Step and the Slope model. In this sense, 

all four models are reasonably consistent with each other.  

The second condition in each pair of conditions suggests that the value of a certain 

measure of travel time variability should coincide in the scheduling model and the 

reduced-form model. For the Step Model, this measure turns out to be the expected 

delay12. For the Slope Model, the variability measure that should be equivalent is the 

variance of the travel time. In contrast to the similarity of the value of travel time, the 

scheduling and the reduced-form models produce very different valuations of travel 

time variability – the reduced-form models consistently give considerably higher 

valuations.   

                                                             

11 The parameter �K is set to zero, since it is insignificant and has the wrong sign in the estimation.  

12 This is due to the specific travel time distribution we have used; in general, it is an expression 
involving the standard deviation of the travel time 
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In the Step Model, the value of expected delay in the reduced-form model is more than 

4 times larger than the corresponding value in the scheduling model. This is regardless 

of whether the comparison is made in monetary terms (dividing by the cost parameter) 

or relative to travel time (dividing by the travel time parameter). In the Slope Model, 

the reduced-form model produces a 9-10 times higher value of travel time variance 

than the scheduling model. Doing the comparison in monetary terms gives a slightly 

higher factor than comparing with the travel time.  

Apparently, the scheduling models and the reduced-form models are inconsistent, in 

the sense that the estimated scheduling parameters in Experiment 1 cannot explain the 

value put on travel time variability in Experiment 2. In other words, the disutility of 

being subject to a risk of a delay exceeds what the scheduling models predict that the 

disutility should be. There seems to be some disutility associated with the uncertainty 

in Experiment 2, over and above the mere disutility of “late arrival” that is captured by 

the scheduling model in Experiment 1, where the arrival time is certain. In other words, 

being “delayed” seems to be worse than just being “late” in the sense of arriving after 

one’s preferred arrival time. 

Interestingly, the respondents do in fact answer the two experiments consistently in a 

specific sense: the respondents that have the highest disutility of late arrival in 

Experiment 1 are also the ones with the highest disutility of delay risk in Experiment 2. 

This was established using a bootstrap estimation, where the valuations of repeated 

sub-samples were estimated.  This gave a correlation of 0.25 between the valuation of 

late arrival in Experiment 1 and the valuation of average delay in Experiment 2. On the 

other hand, no correlations were found for the cost or the (scheduled) travel time 

parameters. Apparently, the individual-specific variation in these parameters is 

swamped by random variation. This is consistent with the finding from the mixed-logit 

estimations, that the variations in the cost and time parameters are small compared to 

the variation in the value of expected delay.  

So, it seems as if the discrepancy between the scheduling and reduced-form models 

cannot be explained by mere randomness. Instead, there may be several possible 

explanations of this phenomenon, and we will discuss some hypotheses that could 

explain why.    

5.1 Timing of information about the actual arrival time 

One of the differences between the two experiments is the point in time at which the 

traveller gets information about her actual arrival time. In experiment 1, the traveller is 

given her arrival time in advance, and hence knows in advance whether she will be late 

with respect to the preferred arrival time (PAT). In experiment 2, only the probability 

and length of a delay is given, so the traveller does not know if she will actually be 

delayed when making a choice – in other words, information about the actual arrival 

time comes later than in experiment 1. Under the theory of the scheduling model, this 

does not matter: the disutility of arriving after the PAT only depends on how late the 

traveller arrives – not how long in advance the actual travel time is known.  

In reality, it is often the case that given ample warning, travellers can respond by 

adjusting their plans, thereby minimizing any lateness penalty they may incur by 

arriving late. In experiment 1, the traveller is told that she will arrive after the PAT, and 

she can take measures accordingly, such as rescheduling activities in advance. In 

experiment 2, if a delay actually occurs, activities have to be rescheduled with much 
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shorter notice, if at all possible. Expressed in the terminology of the scheduling model, 

this means that the lateness penalty depends on how long in advance the traveller 

knows that he or she will be late. If information about the actual arrival time comes 

“early” (as in experiment 1), the lateness penalty will be lower than if the information 

comes “late” (as, potentially, in experiment 2). Put somewhat differently, “rescheduling 

costs” are bigger the later information comes.  

Another way of putting it is that the notion of an exogenously fixed preferred arrival 

time may be untenable. For many travellers, the PAT may in fact be a wide interval, in 

which all arrival times are equally preferred – as long, that is, as the traveller knows in 

advance when she will arrive, and can plan accordingly. If this is the case, the 

“preferred” arrival time will be a function of when the traveller expects to arrive.  

A natural question then is whether there is any way to present experiment 1 in such a 

way that the traveller does not get informed about the arrival time in advance (and 

thus can adjust her PAT). However, this is virtually impossible: one would have to ask 

respondents to rank alternatives that are essentially variants of “you would be delayed 

X minutes without knowing it in advance” – and at the same time, we want to assume 

that travellers choose the optimal departure time given an unknown travel time 

(knowing just its distribution). This is obviously not realistic. It is simply not possible to 

ask respondents whether they would prefer A or B – pretending at the same time that 

they would not know whether they had “chosen” A or B!  

5.2 The disutility of uncertainty per se 

In the scheduling model, there is no direct disutility of travel time uncertainty per se; 

disutility only arises from the risk of arriving late (and hence the need to start the trip 

earlier than otherwise). But it is possible that many people dislike not only the 

adjustments that might be made in the face of uncertainty, but also uncertainty in itself. 

This dislike can either be interpreted as an “anxiety cost”, or as the “decision cost” 

needed to solve the optimal departure time problem. It is well established that 

information about the length of a delay is valued by travellers. This may be because it 

facilitates rescheduling of activities, but it may also be that the uncertainty per se is a 

concern for many travellers.  

Another interpretation is that uncertainty creates a need for “contingency plans”, if the 

traveller should be late; this special kind of planning cost is above and beyond the extra 

time needed to execute the contingency plan. Thus, the need to arrange a contingency 

plan, should one be delayed, is a cost created by the uncertainty per se, over and above 

the mere value of the (expected) delay.  

In practice, anxiety costs, decisions costs and contingency planning costs are virtually 

inseparable from each other. On the other hand, separating them is not really 

necessary: what is important is that they all may cause a disutility exceeding the value 

of the mere costs of actual delays.  

5.3 Policy bias and focus bias  

In all stated preference experiments, there is a risk that valuations are overestimated 

due to policy bias or focus bias. “Policy bias” refers to respondents’ tendency to answer 

in a way that they think will cause certain desirable effects – for example overstating 

their valuation of delays to make the transit authority try harder to decrease delays. 

“Focus bias” refers to respondents’ tendency to forget other important characteristics 
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of a trip, and hence unconsciously overstate their valuation of a certain aspect – in this 

case delays. Both these phenomena may be present in experiment 2, since this dealt 

with delay risks explicitly.  

6 CONCLUSIONS 

The standard way to include the cost of travel time variability in appraisal is to 

estimate the parameters of a reduced-form expression including some measure of 

travel time variability – usually the standard deviation or the average delay. Different 

assumptions about the underlying scheduling model result in different forms of the 

reduced-form expression. The problem with such reduced-form approaches is that the 

valuation of variability will usually depend on the standardized travel time distribution. 

Since this distribution is likely to vary between contexts, a valuation estimated in one 

context cannot (consistently) be applied in another context.  

One way to overcome this problem would be to estimate a scheduling model, and then 

derive the valuation in the reduced-form expression. This would also overcome the 

need to present travel time distributions to respondents in stated choice experiments, 

which is a difficult pedagogical task.  

This approach has been tested in the present paper through comparing the results from 

two scheduling models and the corresponding reduced-form expressions. It turns out 

that the valuations of variability in the reduced-form models are much higher than the 

valuations implied by the scheduling models. The differences are so large that one may 

question the validity of the approach of motivating the standard reduced-form models 

from underlying scheduling models of the usual type. It seems unlikely that the 

valuations from the two models can be reconciled by mere tweaks of the models. 

Instead, we are inclined to believe that the basic assumptions used when deriving a 

reduced-form model from an underlying scheduling model are not realistic – they do 

not capture enough of the essential features of the choice situation that travellers face. 

We hypothesize that there are two factors that are important to take into account. 

First, the parameters of scheduling models, as they are usually interpreted and 

estimated, refer to a situation where the traveller gets information about his or her 

actual arrival time in advance (since respondents need to be aware of the attributes of 

the alternatives to make stated choice questions meaningful). This means that activities 

can be rescheduled to some extent, if necessary, to fit the actual arrival time. In 

contrast, when the travel time is random, the actual arrival time is not known until 

immediately before the arrival time. This makes rescheduling much more onerous, if 

possible at all, and hence the “lateness penalty” will be higher. Phrased differently, the 

parameters of the scheduling model, including the preferred arrival time, may depend 

on when traveller gets information about the actual arrival time. Second, there might be 

a disutility connected to the uncertainty of the travel time per se. This disutility can 

either be interpreted as an “anxiety” cost, as a “decision cost” to solve the optimal 

departure time problem, or as a cost for making up contingency plans for the event that 

a delay occurs. A third explanation may be that the travellers in this sample 

systematically misperceive probabilities, and thus are not really making utility-

maximizing decisions in the conventional sense. This is in contrast to other findings 

(e.g. de Palma el al., 2008) that travel choice tends to converge toward rational utility 

maximization when the trip is a familiar one.  



Valuations of travel time variability 

 

29 

 

From a historical perspective, our findings represent a half-step backwards. Reduced-

form expressions, where some measure of travel time variability was introduced in an 

indirect utility function, were originally introduced and motivated in a rather ad-hoc 

manner. The theoretical underpinning of reduced-form expressions came only later, 

when it was shown that such models could be derived from scheduling models. Our 

results, however, cast some doubt on whether this derivation really captures the whole 

story. It seems as if the derivation of the reduced-form model from a scheduling model 

omits certain features essential to the understanding, analysis and valuation of travel 

time variability. Even if this derivation is useful for proving the microeconomic 

consistency of suggested reduced-form expressions, and for showing the theoretical 

equivalence between scheduling models and reduced-form models, this equivalence 

turns out not to be borne out in the empirical evidence. It seems as if the “late arrival” 

concept in scheduling models does not fully capture the “delay risk” central to reduced-

form models. Or in other words, it seems as if being “delayed” is considerably worse 

than just being “late”.  
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9 APPENDIX A 

We derive the reduced-form expression in the step model, assuming a binary travel 

time distribution, as follows. First, assume that the travel time is @ with probability 

�1 − A�, and @ + B with probability A. The reduced form expression corresponding to 

the “step” scheduling model can be derived directly, or using Fosgerau and Karlström’s 

(2010) general formula. An application of Fosgerau and Karlström’s approach to a 
discrete travel time distribution has been demonstrated by Hjorth (2010).  

To derive the reduced-form expression directly, note first that if a traveller with a 

preferred arrival time at time zero departs at time �, she will get an expected utility of: 

+*���, 	�. = +*−��	 − �� + � min�0, 	� − � max�0, 	�. = 
= −��@ + AB� + �*A�@ + B + ��/ + �1 − A��@ + ��/. − �*A�@ + B + ��4 + �1 −
A��@ + ��4.,   

where the parameters �, � and � are all positive, and where the superscripts �/  (�4) 

denote only the negative (positive) cases of �, otherwise the quantity is set to zero. Let 

�∗ be the optimal departure time and �∗ be the maximal achieved utility, i.e. 

�∗  =  argmax�+�� and �∗  =  max�+��. Given that 
3

345 <  1 , i.e. that it is worse to 

arrive late than to arrive early, we always have �∗ + @ ≤ 0, otherwise the traveller is 

always late. This implies that the last term is always zero. Moreover, we always have 

�∗ + @ + B ≥ 0, since � > 0 and � > 0. This means that we can rewrite the expression 

as: 

+*�. = −��@ + AB� + ��1 − A��@ + �� − �A�@ + B + ��, −@ − B ≤ � ≤ −@  

Depending on whether �/� is greater or less than A/�1 − A�, we get one of two cases: 

3
5 > L

0/L : �∗ = −@,
3
5 < L

0/L : �∗ = −@ − B,
�∗ = −�@ − �� + ��AB �Case I�

�∗ = −�@ − *� + A�� − ��.B �Case II�  

In case I, the expected lateness penalty (γA) is small, so the traveller will still depart just 

to be in time if no delay occurs. In case II, the expected lateness penalty is so large that 

the traveller starts early enough to always be on time.  

The same expression can be derived using the general Fosgerau-Karlström formula. Let 

Z be the mean travel time and 7 be the standard deviation of the travel time. For the 

case of a binary travel time, we have: 

$ =  � @ with probability 1 − A
@ + B with probability A   

Z = @�1 − A� + �@ + B�A = @ + AB  

7 = B�A�1 − A�  

To express the reduced-form utility in terms of scheduling parameters, we use the 

approach presented by Fosgerau and Karlström (2010). We start by taking the 

standardized distribution of travel times: 
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% = �/{
�   

% = 	 ��0 for 1 − A�K for A   

 where: 

�0 ≡ �/{� =	 �/�(0/L)/	(�4^)L� = − L�̂   

�K ≡ �4^/{� =	 �4^/�(0/L)/(�4^)	L� = (0/L)^�   

Note that we leave 	 and � in terms of 7, since the standard deviation will cancel out at 

later stages. (The same derivation can be made without standardizing the travel time 

distribution by 7, but we leave it in here for consistency with earlier literature.) 

Now, define the cumulative distribution of the standardized travel time distribution as 8(�). With the binary distribution given above, this distribution follows a step 

function: 

8(�) = � 0 for � < �01 − A for �0 ≤ � < �K1 for � ≥ �K   

We invert this to find the quantile function, 8/0(Y):  
8/0(Y) = ��0 for 0 < Y ≤ 1 − A�K for 1 − A < Y ≤ 1  

In the setting used by Fosgerau and Karlström (2010), the optimal departure time, in 

terms of the mean and standard deviation, is given by: 

�∗ = −Z − 7 ∗	8/0 11 − 33456  

Because of the discontinuous nature of the quantile function 8/0(Y),  we can define its 

value in terms of where in the range 0 < 1 − A < 1 lies the quantity 1 − 3345 using this 

to find the optimal departure time depending on 
3345: 

Case I 1 − �� + � < 1 − A → �� + � > A	 → 8/0 �1 − �� + �� = �0 
 

�∗ = −Z − 7	�0 = AB − @ − AB = −@ 
Case II 1 − �� + � > 1 − A → �� + � < A	 → 8/0 �1 − �� + �� = �K 

�∗ = −Z − 7	�0 = −@ − AB − (1 − A)B = −@ − B 
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As a consequence of these optimal departure times with respect to the two cases, we 

can compute disutility using the formula for mean lateness given by Fosgerau and 

Karlström (2010): 

> 18, 3
3456 = 	 � 8/0(9)�900/ ::;<   

�∗ = −�Z − (� + �)> 18, 334567  

Under Case I, where a risk-taking traveller chooses a later departure and risks being 

delayed, we have: 

> 18, 33456 = �0 1 3345 − A6 + �KA = − L�̂ 1 3345 − A6 + (0/L)^� A = L�̂ 11 − 33456  

�∗ = −�Z − (� + �)> 18, 334567 = −�(@ + AB) − (� + �) L�̂ 11 − 334567 = −�@ −(� + �)AB  

The first term has the scheduled travel time weighted by a value of time �, and the 

second term has expected delay weighted by the value of late delays (� + �).  
Under Case II, where a risk-averse traveller chooses an earlier departure time and 

avoids the possibility of delay, we have: 

> 18, 33456 = �K 3345 = (0/L)^� 3345  

�∗ = −�Z − (� + �)> 18, 334567 = −�(@ + AB) − (� + �) (0/L)^� 3345 7 = −�@ − [� +(� − �)A]B  

That is, the first term for the scheduled travel time weighted by �, and the second term 

for the delay has mixed weights, where the cost of the certain headway is fully �, but 
the cost of extra travel time, A(� − �), is contingent on the delay actually occurring 

(which has probability A). 

10 APPENDIX B 

We will derive the difference in utility in the slope scheduling model between an 

optimal trip with travel time $ and an alternative trip which deviates from the optimal 

trip in that the departure time is shifted by Δ�  and the arrival time is shifted by Δ	.  

First, the utility of the optimal trip (given travel time $) is given in (13):   

�∗ = −��$ − 5RK (�∗ + $)K + 3RK (�∗)K  

Assume now that departure and arrival time changes relative to the optimal trip. The 

departure time deviation is Δ� from �∗ and the arrival time deviation is Δ	 from the 

optimal arrival time �∗ + $, such that the deviation in the travel time is Δ$ = Δ	 − Δ�. 

The utility of this trip is then:   

���� = −��($ + Δ	 − Δ�) − 5RK (�∗ + $ + Δ	)K + 3RK (�∗ + Δ�)K  
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The difference in utility due to these changes in trip schedule, compared to the optimal 

trip, is then Δ� = ���� − �∗: 

Δ� = −���Δ	 − Δ�� − 5R
K �Δ	�K + 3R

K �Δ��K − �0��∗ + $�Δ	 + �0�∗Δ�    

Using (11) we have that:  

Δ� = −���Δ	 − Δ�� − �0
2 �Δ	�K + �0

2 �Δ��K − �0 � �0
�0 − �0

$ + $� Δ	 + �0
�0

�0 − �0
$Δ� 

= −���Δ	 − Δ�� − 5R
K �Δ	�K + 3R

K �Δ��K − 5R3R
3R/5R

$Δ	 + 5R3R
3R/5R

$Δ�     

= − 1�� + 5R3R
3R/5R

$6 �Δ	 − Δ�� − 5R
K �Δ	�K + 3R

K �Δ��K   

   

 


