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Abstract

This paper considers the path choice problem, formulating and

discussing an econometric random utility model for the choice of path

in a network with no restriction on the choice set. Starting from a

dynamic specification of link choices we show that it is equivalent to

a static model of the multinomial logit form but with infinitely many

alternatives. The model can be consistently estimated and used for

prediction in a computationally efficient way. Similarly to the path

size logit model, we propose an attribute called link size that corrects

utilities of overlapping paths but that is link additive. The model is

applied to data recording path choices in a network with more than

3,000 nodes and 7,000 links.
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1 Introduction

Consider a directed connected graph, defined in terms of links (arcs) and

nodes (vertices). A number of deterministic attributes are associated with

each link. A path is a sequence of links that connects an origin to a destina-

tion and path attributes are assumed to be link additive.1 Given a sample

of observations of origins, destinations and connecting paths, the objective

is to formulate an econometric model for the choice of path conditional on

origins and destinations. It is required that the model assigns probabilities

to paths in a way that is consistent with rational behavior and that model

parameters can be consistently estimated. This paper describes and analyzes

such a model that we call recursive logit.

Estimated route choice models and the model parameters describing such

choices have a variety of uses and the diffusion of GPS technology means that

datasets containing directly observed path choices are becoming increasingly

available. One application is in models predicting traffic load in road net-

works; such models are widely used to assess, e.g., infrastructure invest-

ments, regulation of traffic through road pricing, capacity management etc.

Another application is in route guidance software. These rely on well-known

algorithms for finding the least cost path in a network (Dijkstra; 1959). How-

ever, it is necessary to be able to compute the cost of a path, when the path

is described in terms of not just one but a range of characteristics such as

length, speed, likelihood of delay, left turns, speed bumps etc. Using a route

1Path and route are used interchangeably in the route choice modelling literature. In
this paper we use path except when referring to a choice model because they are in general
called route choice models in the literature.

1



choice model it is possible to estimate relevant parameters based on observed

choices.

The recursive logit model corresponds to a dynamic discrete choice model

(Rust; 1987) where the path choice problem is formulated as a sequence of

link choices. At each node the decision maker chooses the utility-maximizing

outgoing link with link utilities given by the instantaneous cost, the expected

maximum utility to the destination (value function) and i.i.d. extreme value

type I error terms. Link choice probabilities are then given by a multinomial

logit model and expected downstream utilities are identified from Bellman

equations. This leads to a chosen path in a sequential and dynamic fashion.

When the network contain cycles, paths may contain loops and can be arbi-

trarily long; then there will generally be infinitely many potential paths that

connect an origin to a destination. It turns out that the probability that a

given path is chosen has the form of a multinomial logit model, except that

the number of alternatives is infinite.

So far, all route choice models that can be estimated from observed paths

have been path based, meaning that they describe discrete choices among

paths. The recursive logit has the advantage over these approaches that it can

be both consistently estimated and used for prediction in a computationally

efficient way without requiring any restriction on the choice sets of paths.

(We further discuss the comparison with existing models in Section 7.) This

is potentially very useful for e.g. traffic simulation applications where the

number of paths that can be stored is restricted by available memory.

The idea of using a sequential link choice model to describe path choice

has been around for quite some time in the context of traffic assignment
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(e.g. Bell; 1995; Akamatsu; 1996; Baillon and Cominetti; 2008). There is

also literature in the context of networks without cycles (e.g. Dial; 1971),

which we do not review here because of this restriction on the choice set.

Melo (2012) presents a sequential choice model similar to ours but where

a path is interpreted as a bundle of goods (this work has been developed

simultaneously and independently of ours) and the main result is a Markovian

assignment which is related to the work by Baillon and Cominetti (2008).

This paper is the first to provide links between the sequential link based

route choice model and the finite multinomial logit model in the context of

route choice. Second, we are also the first to provide an interpretation of the

model as a dynamic discrete choice model (Rust; 1987; Aguirregabiria and

Mira; 2010), connecting the path choice problem to that literature. Third,

we are the first to discuss estimation of the model, including by sampling of

alternatives (McFadden; 1978).

Before formalizing the recursive logit model in the following section, we

briefly introduce the multinomial logit model for a finite set of alternatives

j ∈ {1, ..., J} as a basis for comparison. A utility uj is associated with

each alternative and is the sum of a deterministic and a random component

vj+µεj where εj are i.i.d. extreme value type 1 with scale parameter µ. The

maximum utility is umax = maxj uj and the expected maximum utility is

Eumax = µ ln
∑

j e
1

µ
vj . It is a general fact for additive random utility models

(McFadden; 1978; Fosgerau et al.; forthcoming) that choice probabilities can

be found as the gradient of Eumax considered as a function of the vector of
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deterministic utility components v and hence

Pj =
e

1

µ
vj

e
1

µ
Eumax

=
e

1

µ
vj

∑
j′ e

1

µ
vj′

. (1)

The multinomial logit model satisfies the IIA property, since Pi/Pj =

e
1

µ
(vi−vj), which depends only on vi − vj. This property makes it possible to

estimate the model using only a sample of alternatives in order to reduce

computational cost (McFadden; 1978). We describe in section 3.4 how this

can be done in the context of the recursive logit model.

The proposed model has an infinite but still discrete choice set. It is worth

mentioning that there is a small literature that considers generalizations of

discrete choice models to continuous choice sets representing physical space

or time. The first to describe such models seems to be McFadden (1976).

Section 2 introduces the recursive logit model; Section 3 discusses var-

ious properties of the model including computation of the likelihood and

estimation using sampling of alternatives. Section 4 introduces the link size

attribute and presents an illustrative example. Maximum likelihood estima-

tion of the model is described in Section 5 and 6 provides estimation results

using synthetic and real data. In Section 7 we discuss comparison with other

route choice models and finally Section 8 concludes.

2 The recursive logit model

In this section we formulate the path choice problem as a dynamic discrete

choice model where the utility maximization problem is consistent with a
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dynamic programming problem. For the sake of simplicity and because the

numerical results in this paper concern a static network we do not time index

the notation. The model formulation is however valid for a dynamic setting

as long as the link attributes are deterministic.

Consider a directed connected graph (not assumed acyclic) G = (A,V)

where A is the set of links and V the set of nodes. We denote links k, a ∈ A

and the set of outgoing links from the sink node of k A(k) (see Figure 1

for an illustration of the notation). A path is a sequence of links (k0, .., kI)

with ki+1 ∈ A (ki) for all i < I. A deterministic utility component vn (a|k) =

v
(
xn,a|k; β

)
< 0 is associated with each link pair, a ∈ A(k) ⊂ A, where

xn,a|k is a vector of observed characteristics of the link pair (k, a) that may

include characteristics of traveler n and β is an unknown parameter vector

to be estimated. Path attributes are assumed to be link additive. In the

terminology of dynamic programming, k is a state and a is a potential action

given state k.

We note that the choice of state space depends on the application. For

instance, if a network has time-dependent link travel times, a state can be

defined by a link time pair and the size of the state space is then the number

of links times the number of time intervals. One can also increase the state

space in order to include attributes that would otherwise not be link additive,

similar to what is done here. Indeed, dealing with link pairs instead of node-

link pairs allows us to include turn related attributes in xn,a|k.

Consider now an individual traveling from an origin to a destination node.

The network is extended with a dummy link to include the destination. More

precisely, we define an absorbing state by adding a link d without successors
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from the destination node (see Figure 1). The set of all links is then Ãd =

A∪d. The deterministic utility is v(d|k) = 0 for all k that have the destination

as sink node.

At each state k a traveler chooses an action a (next link) from the set of

outgoing links A(k). An instantaneous utility, un(a|k) = vn(a|k) + µεn(a),

is associated with each action in the choice set A(k) conditional on current

state k. The random terms εn(a) are assumed i.i.d. extreme value type 1

with zero mean and they are independent of everything else in the model.

The traveler chooses the next link given the current state in a stochastic

process having the Markov property (Rust; 1987; Aguirregabiria and Mira;

2010). In our setting the next state is just the chosen link and it is given with

certainty by the action. At each current state k the traveler observes random

utility terms εn(a), a ∈ A (k). He then chooses the link a that maximizes the

sum of instantaneous utility un (a|k) and expected downstream utility, the

latter being given by the value function V d(a), which is defined by taking the

continuation of this process into account via the Bellman equation (Bellman;

1957) as follows.

V d
n (k) = E

[
max
a∈A(k)

(
vn(a|k) + V d

n (a) + µε(a)
)]

∀ k ∈ A. (2)

Note here that the traveler may traverse a link more than once and that new

random terms are drawn at each step.

The probability of choosing a link a given state k is given by the multi-
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nomial logit model

P d
n(a|k) =

e
1

µ
(vn(a|k)+V d

n (a))

∑
a′∈A(k) e

1

µ
(vn(a′|k)+V d

n (a′))
. (3)

Then the value function is the logsum

V d
n (k) =





µ ln
∑

a∈A δ(a|k)e
1

µ
(vn(a|k)+V d

n (a)) ∀k ∈ A

0 k = d.
(4)

For the purpose of introducing matrix notation in the next section, we have

added an indicator δ(a|k) that equals one if a ∈ A(k) and zero otherwise so

that the sum is over the set A. V (d) = 0 since the maximum over an empty

set is taken to be zero.

3 Properties of the model

In this section we present how to solve the Bellman equations (2) and how

to compute path choice probabilities and link flows. Furthermore, we discuss

sampling of alternatives. In order to simplify the notation, we suppress the

index n for individuals and the superscript d used previously to clarify that

value functions and link choice probabilities are destination specific.

3.1 Solving the Bellman equations

We start by noting that our formulation has some features that are non-

standard in the dynamic discrete choice literature. First, although we for-

mulate the problem as an infinite horizon problem, we have a discount factor
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of one. Second, we assume a deterministic environment, such that a given

state and action will result in a new state deterministically. This is an im-

portant, but realistic, assumption in our context, and as it is shown in the

following, it allows us to compute the value functions by simply solving a

systems of linear equations.

We transform (4) by taking the exponential and raising to the power 1
µ

e
1

µ
V (k) =





∑
a∈A δ(a|k)e

1

µ
(v(a|k)+V (a)) ∀ k ∈ A,

1 k = d.
(5)

Equation (5) can now be written in matrix form using the following defini-

tions. Let M (|Ã| × |Ã|) denote the incidence matrix defining instantaneous

utilities

Mka =





δ(a|k)e
1

µ
v(a|k), a ∈ A (k)

0 otherwise.
(6)

Since d has no successors, M has a zero row for k = d. We denote by z

(|Ã| × 1) a vector with elements zk = e
1

µ
V (k) and b (|Ã| × 1) a vector with

elements bk = 0, k 6= d and bd = 1. Then (5) can be written as a system of

linear equations

z = Mz+ b ⇔ (I−M)z = b, (7)

where I is the identity matrix. The system has a solution if I−M is invertible,

which may or may not be the case. This depends on the balance between

the number of paths that connect the nodes in the network and the size

of the instantaneous utilities 1
µ
v(a|k). This issue is particularly important

to consider when searching over the parameter space in the estimation of
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the model since for some trial values of β, I − M may be ill-conditioned

or even singular. To explain this further, let m ≥ 0 be some integer. The

matrix Mm (the m-th power of M) then contains the instantaneous utilities

of paths between any pair of links that are m links long. On the one hand,

many alternative paths and values of 1
µ
v(a|k) close to zero tend to make the

entries of Mm large. That is, the expected utility of traveling between two

locations in m steps is larger the more ways there are of doing that trip.

If there are enough alternative paths and if the instantaneous utilities are

sufficiently close zero, then the expected utility may be positive. Indeed, the

deterministic utilities are negative by definition but the random terms may

be positive. On the other hand, if the elements of Mm tend to 0 as m → ∞

then I −M is invertible. To conclude this discussion on the invertibility of

I−M we note that 1
µ
v(a|k) is network dependent since they are scaled to the

variance of the error terms. Therefore, dense networks and many alternative

paths do not necessarily imply that I−M is ill-conditioned.

For medium size networks the system (7) can be solved using a direct

solution method. For the numerical results in this paper, reported in Sec-

tion 6, we use the direct solver available in MATLAB and our network has

7,459 links. If the network is very large a direct method may not be feasible

and one can then use iterative solution methods, see e.g. Saad and van der

Vorst (2000) for an excellent review of such methods.

Note now that the next-link choice probabilities for a common destination

are independent of the origin. So, we organize the probabilities (3) into a
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matrix P defined for links in A. A row corresponding to state k is

Pk =
Mk ◦ z

T

Mkz
(8)

where ◦ is the element-by-element product and Mk is row k of matrix M.

3.2 Path probabilities

A path observation is a sequence of states σ = {ki}
I
i=0 where k0 is the origin

and kI = d. The likelihood of a path observation is P (σ) =
∏I−1

i=0 P (ki+1|ki)

by the Markov property of the model. A simple expression for P (σ) is

available using (3) upon noting that the denominator is just e
1

µ
V (k). Hence,

since V (d) = 0 by definition,

P (σ) =
I−1∏

i=0

e
1

µ
(v(ki+1|ki)+V (ki+1)−V (ki))

= e−
1

µ
V (k0)

I−1∏

i=0

e
1

µ
v(ki+1|ki). (9)

Denote v (σ) =
∑I−1

i=0 v(ki+1|ki), such that

P (σ) =
e

1

µ
v(σ)

e
1

µ
V (k0)

=
e

1

µ
v(σ)

∑

σ′∈Ω

e
1

µ
v(σ′)

(10)

where Ω is the set of all possible paths, which is infinite in our case.

Note here the similarity to the multinomial logit model as written in (1).

The numerator in (10) comprises the deterministic utility component for the

path σ and the denominator comprises the expected utility for the choice
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of path; the denominator equals the sum of e
1

µ
v(σ′) over all possible paths.

Hence our model is equivalent to a path based multinomial logit model with

an infinite number of alternatives. The ratio of the probabilities of any two

paths σ1 and σ2 connecting the same origin and destination depends only on

v (σ1)− v (σ2), this is the IIA property.

3.3 Link flows

In some situations it is useful to be able to apply the model to predict flows on

the links in the network. The model allows a simple way of doing this using

the next-link probabilities (3). We compute the link flows for one destination

and multiple origins. The link flows for multiple destinations can then be

computed by summation.

Consider a destination d. Denote the demand for trips originating at link

a and ending at d as G(a). Denote the expected flow on link a as F (a). This

comprises the flow that originates on a and the expected incoming flow, that

is, F (a) = G(a) +
∑

k∈A P (a|k)F (k). We organize the expected flows into a

vector F, the demand into G, both defined for A.

Using this notation we have

(I−PT )F = G. (11)

Baillon and Cominetti (2008) prove that (I − PT ) is invertible (Lemma 1)

and we can therefore compute the expected link flows by solving the system

of linear equations.
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3.4 Estimation with sampling of alternatives

Even though the focus of this paper is the specification of a model that

can be consistently estimated and applied without sampling choice sets of

paths, this section is dedicated to linking the proposed model to the path

sampling approach (Frejinger et al.; 2009). Indeed, the underlying choice

set assumption is the same, namely, that any path in the network could be

chosen. Moreover, showing that the results in McFadden (1978) for the logit

model with a finite choice set also hold for the case with an infinite choice

set is useful to understand the model.

A possible motivation for estimating the recursive logit model on a sample

of alternatives is that a standard estimation software could be used. In this

case the systems of linear equations (7) does not need to be solved in the

iterations of the non-linear optimization algorithm. We can also note that

the recursive logit model is very easy to use for sampling paths with known

probability using (8). Hence, it could be used to sample paths and then

estimate the model with a standard software using the sampling correction

proposed in Frejinger et al. (2009).

Consider that for each observation, a sample of alternatives is chosen

conditional on the observed path and that the number of sampled alterna-

tives is bounded. Denote the probability of sampling a set of alternatives D

given observed choice σ by π (D|σ) and assume that the positive conditioning

property holds: σ ∈ D ⇒ π (D|σ) > 0. We also assume that the chosen path

is always included in D, such that σ /∈ D ⇒ π (D|σ) = 0.

Then an argument from McFadden (1978) establishes the consistency of
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estimates based on the modified probabilities

e
1

µ
v(σ)+lnπ(D|σ)

∑
σ′∈D e

1

µ
v(σ′)+lnπ(D|σ′)

.

The advantage of this finding is that the modified likelihood is just that of a

standard multinomial logit model having a finite number of alternatives.

The essential step in the McFadden (1978) argument, translated into the

present context, is the following. The expected modified likelihood is

E

(
∑

σ∈Ω

∑

D⊆Ω

P ∗ (σ) π (D|σ) ln

[
e

1

µ
v(σ|β)+lnπ(D|σ)

∑
σ′∈Ω e

1

µ
v(σ′|β)+lnπ(D|σ′)

])
,

where the outer expectation is over explanatory variables including observa-

tion specific origins and destinations. This can be rewritten as

E

(
∑

D⊆Ω

(∑
σ′∈Ω e

1

µ
v(σ′|β∗)π (D|σ′)

∑
σ′∈Ω e

1

µ
v(σ′|β∗)

)
∑

σ∈D

e
1

µ
v(σ|β∗)π (D|σ)

∑
σ′∈D e

1

µ
v(σ′|β∗)π (D|σ′)

ln

[
e

1

µ
v(σ|β)+lnπ(D|σ)

∑
σ′∈D e

1

µ
v(σ′|β)+lnπ(D|σ′)

]) (12)

This may be recognized as the expectation of a term having the general form

E [Σσ∈Dφ (σ|β
∗) lnφ (σ|β)] , which is exactly the case considered by McFad-

den (1978). Consistency of the estimates then follows.

4 Link size attribute and illustrative example

In real networks, paths connecting a given origin destination pair share links.

Due to this physical overlap it is generally assumed that paths share unob-
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served attributes meaning that the path utilities are correlated. Ignoring

this correlation may result in erroneous path probabilities and substitution

pattern. Various models have been proposed in the literature to model cor-

related paths utilities. The most popular are the path size logit (Ben-Akiva

and Bierlaire; 1999) and c-logit (Cascetta et al.; 1996) models because they

provide a way to heuristically correct the utility for overlapping paths while

keeping the simple structure of a logit model. Several different versions of

the path size (PS) attribute and commonality factor (the correction used in

the c-logit model) have been proposed. They decrease the utility for overlap-

ping paths in way that is somewhat proportional to the amount of overlap

with other paths in the choice set. Hence, these corrections either require an

enumeration of all paths or choice set sampling (see Frejinger et al.; 2009,

for an example). These corrections are not link additive and can therefore

not be used with the recursive logit (RL) model. In this section we propose

a link additive correction attribute, called Link Size (LS), that can be used

with the RL model and that does not require any restriction on the choice

set.

Path size logit (PSL) seems to be the most frequently used model in

the literature and we therefore compare the LS attribute to the original

formulation of the PS attribute. The latter is defined for a given path j and

choice set Cn

PSjn =
∑

a∈Γj

La

Lj

1∑

i∈Cn

δai
(13)

where the sum is over all links of path j (the set is denoted Γj). The length

of a link a, La, is divided by the length of the path Lj and the number of
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paths in choice set Cn that uses link a (δai equals one if path i uses link a

and zero otherwise). Therefore, PSjn = 1 if path j does not overlap with

any other path in Cn and 0 < PSjn < 1 otherwise. The correction of the

path utility is βPS lnPSjn where βPS is a parameter to be estimated. Note

that if path j does not overlap with any other path in Cn, lnPSjn = 0.

The LS attribute is based on a similar idea but instead of the number of

paths using a given link, we use the expected link flow as a proxy for the

amount of overlap. Indeed, we can apply the RL model to compute expected

link flows in an efficient way using (11). To do so we choose an instantaneous

utility with parameters β̃, and we define an origin specific demand vector Go

with zero-valued elements except for the origin link which equals one. Note

that we use β̃ to denote when the parameters β have chosen values, and later

on we denote estimated values by β̂. The origin-destination specific vector

LSod of size (A× 1) where each element LSod
k is the LS attribute of link k is

LSod = Fod(β̃). (14)

Fod(β̃) is the solution to (11) which can be written for this specific case as
(
I−Pd(β̃)T

)
Fod(β̃) = Go. Note that Fod may be viewed as normalized

since Go1 = 1.

We use the small network shown in Figure 2 as an illustrative example.

Each bi-directional link actually corresponds to two directed links (arcs) and

we denote links by the numbers of their source and sink nodes. Node 1 is the

origin for the path based models and link 21 the origin for the RL model.

We fix the cost of link 21 to zero so that the two specifications of the origin
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are equivalent. The destination node is 5 and a dummy link d (absorbing

state) is added for the RL model. The only attribute is link length and the

values are given in the figure. Moreover, u-turns are not allowed.2

There are four simple paths (without loops), three going left at node 1 and

one going right and they all have the same length of 4. In order to compute

path probabilities we choose a length parameter β̃l = −1.5. In Table 1 we

report the probabilities given by the logit model with the four simple paths

(with and without the PS variable), and the RL model (with and without

the LS attribute).

The logit model assigns the same uniform probability to each of the paths

(0.25) and the probabilities of the RL model are numerically close. The

difference in value is due to the fact that RL allows for loops with a very small

probability. Of course, if we increase the magnitude of β̃l the probabilities

tend to 0.25. The probabilities given by the PSL model using β̃PS = 2.5

are close to what often is expected in this kind of example, namely that

there is roughly a 0.5 probability of going left at node 1 and 0.5 probability

of going right.3 Approximately the same result can be obtained applying

the RL model with a LS attribute and β̃LS = −0.75 (this attribute has

been generated using the RL model with β̃l = −1.5). Since the LS and PS

attributes are different corrections, it is clear that different parameter values

need to be used. In this small example we choose values but in practice they

2Technically, this is implemented by introducing a fixed large penalty to each u-turn
so that their probability is close to zero in the RL model, except for the origin link 21 to
link 12.

3In reality one would expect that the possibility of adapting the route choice down-
stream is valuable and hence the probability of going left is higher than going right. In
this example, the network is static and deterministic and only link length is considered so
being adaptive has no value.
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should be estimated based on data.

The LS attribute depends on the chosen utility specification of the RL

model used to compute the expected flow vector. However unlike the PS

attribute no path sampling is required. The utility specification is applica-

tion specific and different specifications should be tested to investigate the

sensitivity of the final estimation results with respect to the definition of the

LS attribute. Finally we note that including a LS attribute makes the RL

model computationally more intensive to estimate and to apply because the

matrix M becomes origin-destination specific.

5 Maximum likelihood estimation

The proposed model using the path probabilities as defined by (9) can be

estimated by maximum likelihood. Since we are able to compute the value

functions in a straightforward way we use an approach similar to Rust’s

nested fixed point algorithm.4 Our estimation algorithm is implemented in

MATLAB (code is available upon request) and we use the unconstrained non-

linear optimization algorithm BFGS to search over the parameter space. For

each trial value of the parameters, and destination (or origin-destination pair

if a LS attribute is included) in the sample, the system of linear equations

(7) is solved.

We note that the optimization problem is actually constrained since (7)

does not have a solution for all possible values of the parameters and if there

is no solution for at least one observation in the sample the log-likelihood

4Another option is, e.g., the swapped nested fixed point algorithm proposed by Aguir-
regabiria and Mira (2002).
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function is not defined (see Section 2 for a discussion on the invertibility of

I−M). We deal with this issue by starting at a feasible point (large enough

magnitude of the parameters) and then being conservative in the initial step

size of the line search algorithm, at the price of an increased number of

iterations. We hence make the assumption that infinite loops are not present

in observed paths and that the specified model is sufficiently close to the

true model so that (7) has a solution for all observations at the maximum

likelihood estimates of the parameters.

The gradient is evaluated by finite difference at each iteration of BFGS.

However, in order to increase the accuracy we use the analytical gradient for

computing the standard errors. The log likelihood function defined for obser-

vations n = 1, . . . , N is LL(β) = ln
∏N

n=1 P (σn) =
1
µ

∑N

n=1

∑In−1
i=0 v(ki+1|ki)−

V (k0) and if the instantaneous utilities are linear-in-parameters, the analyt-

ical derivative with respect to a given parameter βq is

∂LL(β)

∂βq

=
1

µ

N∑

n=1

[
In−1∑

i=0

xq

i+1|i −
∂V (kn

0 )

∂βq

]
. (15)

To derive
∂V (kn

0
)

∂βq
, we differentiate (7) which yields

∂z

∂βq

= (I−M)−1

[
∂M

∂βq

]
z. (16)

Since zk = e
1

µ
V (k), ∂z

∂βq
= z ◦ 1

µ
∂V
∂β

and accordingly

∂V (kn
0 )

∂βq

= µ
1

z0

(
∂z

∂βq

)

0

(17)

18



where z0 and
(

∂z
∂β

)
0
are elements corresponding to the origin. The analytical

gradient could be used at each iteration of BFGS instead of the numerical

gradient. Computing (15) is however more involved than computing the

log-likelihood function 2|β| times (gradient by finite difference) since the log-

likelihood function can be evaluated very efficiently thanks to (7) and (9).

6 Numerical results

In this section we present estimation results using the network of Borlänge,

a city located in the middle of Sweden. The network contains 3,077 nodes

and 7,459 links with 21,452 link pairs (number of non-zero entries in the

M matrix). First we present validation results using simulated observations

followed by estimation results based on real GPS data.

6.1 Simulated observations

In order to validate the RL model we choose a model specification and

use it to simulate 10 samples of 500 path observations each for one origin-

destination pair in the network. The instantaneous utility function is defined

by the following expression where we have chosen the parameters values

(β̃TT = −2, β̃LT = −1, β̃LC = −1 and β̃UT = −20)

v(a|k) = βTTTTa + βLTLTa|k + βLCLCa + βUTUTa|k. (18)

TTa is the travel time in minutes of link a and LTa|k is a left turn dummy

that equals one if the turn from k to a is a left turn with an angle larger than
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40 degrees (but less than 177 degrees) compared to the direction of the state

link, and zero otherwise. LCa is a constant equal to one for all links which it

is included to penalize paths with many crossings. UTa|k is a u-turn dummy

that equals one if going from a to k is a turn of 177 degrees or larger. In order

to prevent numerical problems we have removed u-turns from the network.5

If there are very short links in the network it can otherwise be possible to

loop between a pair of nodes at almost no cost. The breakpoint for the u-

turn angle is fixed so that small numerical differences do not matter (turn

angle is 3.1 radians instead of pi). One third of the link pairs are classified

as u-turns. With the left turn breakpoint angle fixed to 40 degrees, about

one fifth of the link pairs are classified as left turns and this number is not

very sensitive to this limit, for 30 degrees it is still approximately one fifth.

Before presenting the estimation results we give some descriptive statistics

of the 10 samples of 500 observations each. Taking the average over the

samples, the observations use 39 different paths (with a maximum of 44 and

minimum of 35) for this one origin-destination pair that is considered. The

path travel times range from 8.8 minutes to 12.3 minutes with an average of

9 minutes. Out of the 5,000 observations, 35 (0.007%) are paths with loops

where we consider a repeated link as a loop. Indeed, as discussed previously,

the model allows paths with loops with a very small probability. Out of

these 35 observations, one had 4 loops, 8 had 2 loops and the remaining 26

observations had 1 loop.

Table 2 reports the parameter estimates and standard errors for each

5This has been implemented by choosing β̃UT = −20 so that u-turns have a probability
very close to zero.We have tested different values of βUT and conclude that the parameter
estimates are insensitive to βUT for a range around -20.
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of the samples. All estimates are not significantly different from their true

values at the 5% significance level. The last two rows in the table report

the averages of the parameter estimates and of the estimated standard error

as well as the standard error of the parameter estimates over the different

samples. We find that the parameters and standard errors appear to be

unbiased. Indeed, the average parameter estimates are close to the chosen

parameter values and that of the standard error of the estimates are close to

the average of the estimated standard errors.

6.2 Real observations

GPS traces of 200 vehicles were collected during two years for a traffic safety

study in Borlänge with the main aim of monitoring speeds. After data pro-

cessing, using a subset of 24 of the vehicles for which the log frequency of the

GPS device was the highest, the sample consists of 1,832 trips corresponding

to simple paths with a minimum of five links. There are 466 destinations

and more than 37,000 link choices in this sample.

The estimation results based on this data are presented in Table 3. The

same instantaneous utility specification (18) as for the synthetic data is used

for the RL model and the parameter associated with u-turns is fixed to -20

for numerical reasons, as explained in the previous section. The estimates

are highly significant and the signs and magnitudes are reasonable. For the

second model, we have included a LS attribute and estimated the associ-

ated parameter βLS. The attribute is defined by (14) using the same utility

specification as the RL model (18) with parameters β̃TT = −2.5, β̃LT = −1,
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β̃LC = −0.4, β̃UT = −20. There is a remarkable improvement in final log-

likelihood value when adding the LS attribute and β̂LS has its expected sign.

Interpreting the parameters of the RL model with LS attribute in terms of

travel time, a crossing (link constant) is worth approximately 6 seconds and

a left turn approximately 20 seconds. Most intersections in the Borlänge

network are uncontrolled and a left turn therefore does not only take longer

time but also means crossing meeting traffic.

7 Discussion on route choice model compar-

ison

There are basically three different route choice modelling approaches avail-

able in the literature including the one proposed here. The first approach,

which we refer to as the classic approach is path based and uses choice sets

which are the union the observed paths and those that have been sampled

with some path generation algorithm. When estimating the model and using

it for prediction the generated choice sets are treated as if they were the actual

choice sets and no correction for the path sampling is used. Frejinger et al.

(2009) argue that the resulting parameter estimates are not consistent since

the values can vary significantly with the definition of the choice sets. The

classic approach has been used for estimating and applying various kinds of

route choice models, for example, PSL and c-logit, nested logit (Vovsha and

Bekhor; 1998) and mixed logit (Bekhor et al.; 2002; Frejinger and Bierlaire;

2007).
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The second approach, henceforth referred to as the sampling approach

is proposed by Frejinger et al. (2009). It is also path based and choice

sets are sampled with some path generation algorithm. However, unlike the

classic approach the choice sets are assumed to include all feasible paths

in the network and path utilities are corrected for the sampling protocol.

The resulting parameter estimates are consistent. The sampling approach

has been used for estimating logit and PSL models. Recent results show

that also the family of multivariate extreme value models can be estimated

on samples of alternatives (Guevara and Ben-Akiva; 2013). The estimated

models can be used for prediction by Metropolis-Hastings sampling of paths

as proposed by Flotterod and Bierlaire (2013).

The third approach is the link-based one proposed here. The RL model

can be consistently estimated and efficiently used for prediction which makes

it, in theory, superior to the other models. It is still of interest to empirically

compare the RL model and the sampling approach since they can both be

consistently estimated and are based on the same assumption of unrestricted

choice set. We now turn our attention to discussing how these two approaches

can be compared and we start with the estimation results.

If paths with loops are considered by the path sampling algorithm, the

path based logit and the RL models are identical. In contrast, if PSL is

compared to RL with LS attribute, the parameter estimates may be differ-

ent because of the correlation correction terms. Since both PS and LS are

proxies for correlation it is however unclear which one is the best. The fore-

casting capabilities would then need to be compared which we discuss in the

following.
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In order to compare the predictions of the two modelling approaches a

real data set should be used. The models can then be estimated based on a

subset of the data and applied to a holdout sample. A natural candidate as a

performance measure would be the resulting predicted log-likelihood (PLL)

values. Computing the PLL for the RL model is straightforward but for the

sampling approach it is more involved. Samples of paths need to be used also

for the prediction since it is not feasible to enumerate all paths, even if only

simple paths are considered.6 Note, however, that unlike for estimation, it

does not make sense to include the observed paths with probability one in the

sample. This implies that an observation can have a predicted probability of

zero which is of course problematic. This case actually has a high probability

of occurring because the exact observed paths are often not found by path

generation algorithms (see coverage results reported e.g. in Ramming; 2002).

We conclude that it is not possible to use the state-of-the-art to perform a

meaningful forecasting comparison of PSL and RL with LS models. Such

a comparison is therefore out of the scope of this paper but it remains an

interesting topic for future research.

8 Concluding remarks

This paper presents a model for the choice of path in a network with no

constraints on the choice set. We start from a dynamic specification of link

choices and show that it is equivalent to a static model of the multinomial

6There is an exponential number of simple paths for a given origin-destination pair and
enumerating these is a NP-complete problem. Even counting these paths is a #P-complete
problem which is at least as difficult as a NP-complete problem (Valiant; 1979).
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logit form. We formalize a link size attribute correcting utilities for correlated

paths, similar to a path size attribute. The model is estimated by maximum

likelihood on simulated and real data in a network with more 3000 nodes

and 7000 links. Several instances of simulated data are generated with a

chosen model and the resulting parameter estimates are consistent. More-

over, the parameter estimates based on the GPS data have reasonable signs

and magnitudes and small standard errors.

There is a large literature on the estimation of the value of travel time, i.e.

the willingness-to-pay to reduce travel time.7 Such estimates are routinely

used around the world to evaluate traffic infrastructure investments and thus

they guide the use of a noticeable share of GDP in most countries. The

variation in the trade-off between travel time and cost is limited in most

revealed preference data and therefore most empirical studies of the value

of travel time have resorted to stated choices collected in surveys. This

situation could change as very rich GPS data sources emerge that allow us

to measure the travel times in large networks as well as observe many actual

route choices. The framework presented in this paper offers a way to model

these choices econometrically.

Future work should be dedicated to explore more ways than the link size

attribute to model correlated utilities. One possible extension is a nested

approach that allows for different scale parameters, another is to use random

parameters.

7The micro-economic formulation of the theory of the value of travel time was funda-
mentally formulated by Beckmann et al. (1956), Johnson (1966), Oort (1969) and DeSerpa
(1971). The estimation of the WTP for travel time is reviewed in Hensher (2001) and Gunn
(2000). See Fosgerau (2006) for warnings about estimating a mean WTP from discrete
data.
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Baillon and Cominetti (2008) show the existence of a unique equilibrium

for a model of the type presented here and provide some numerical experi-

ments. It is an interesting topic for future research to use the recursive logit

model in dynamic traffic assignment when their Markovian traffic equilibrium

does not apply.

The application in this paper concerns a static network, the model is how-

ever valid also for a dynamic network setting as long as the link attributes are

deterministic. Ramos et al. (2012) present estimation results for a dynamic

model where a state is defined as a link and time pair. They use a GPS data

set collected in the The Netherlands where, in addition to path choices, the

network link travel times are known at one minute time intervals during the

whole data collection period.
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Paths Logit RL PSL RL with LS
1: 12, 23, 35 0.25 0.24 0.20 0.18
2: 12, 23, 34, 45 0.25 0.24 0.12 0.13
3: 12, 24, 45 0.25 0.24 0.20 0.19
4: 15 0.25 0.24 0.48 0.48

Table 1: Path probabilities for illustrative example
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Sample β̂TT Std. Err. β̂LT Std. Err. β̂LC Std. Err.
1 -1.91 0.21 -1.02 0.09 -1.07 0.06
2 -1.97 0.22 -0.99 0.09 -1.04 0.06
3 -1.80 0.21 -1.09 0.09 -1.07 0.06
4 -2.38 0.26 -0.88 0.09 -1.01 0.06
5 -2.20 0.24 -0.96 0.08 -0.93 0.05
6 -2.30 0.26 -0.96 0.09 -0.96 0.06
7 -1.69 0.18 -1.00 0.08 -1.11 0.06
8 -1.84 0.20 -1.04 0.08 -1.04 0.05
9 -2.40 0.29 -1.05 0.09 -0.89 0.06
10 -1.88 0.20 -0.99 0.08 -0.976 0.05

Average -2.04 0.23 -1.00 0.09 -1.01 0.06
Std. Err. 0.26 0.06 0.07

β̂UT is fixed to -20

Table 2: Simulation study results
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RL RL with LS

β̂TT -2.45 -3.20
Std. Err. 0.06 0.06
t-test -40.83 -52.59

β̂LT -1.01 -1.11
Std. Err. 0.03 0.03
t-test -33.67 -31.90

β̂LC -0.40 -0.32
Std. Err. 0.01 0.01
t-test -40.00 -21.98

β̂LS -0.23
Std. Err. 0.02
t-test -13.20

LL(β̂) 7481.5 7213.2

β̂UT is fixed to -20

Table 3: Real data results
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