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Abstract

GPS and nomad devices are increasingly used to provide data from

individuals in urban traffic networks. In many different applications,

it is important to predict the continuation of an observed path, and

also, given sparse data, predict where the individual (or vehicle) has

been. Estimating the perceived cost functions is a difficult statistical

estimation problem, for different reasons. First, the choice set is typ-

ically very large. Second, it may be important to take into account

the correlation between the (generalized) costs of different routes, and

thus allow for realistic substitution patterns. Third, due to technical

or privacy considerations, the data may be temporally and spatially

sparse, with only partially observed paths. Finally, the position of ve-

hicles may have measurement errors. We address all these problems

using a indirect inference approach. We demonstrate the feasibility of

the proposed estimator in a model with random link costs, allowing
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for a natural correlation structure across paths, where the full choice

set is considered.

1 INTRODUCTION

A growing range of data gathering techniques is increasingly available to

be used in transportation planning. For example, the Global Positioning

System (GPS) and nomad devices are used for the collection of spatial-

temporal data regarding movements of individuals. Due to both technical

restrictions and privacy concerns, such data often have a sparse structure

in space and time. Individuals’ whereabouts are not registered at every

instant; rather they are sampled in space and/or time. For many different

applications, such as route guidance, traffic management for collaborative

filtering applications, it is of major interest to predict the immediate future

path, and also to be able to infer where the individual (or vehicle) has been.

In this context, the estimation of a route choice model is of fundamental

interest.

There are several problems that make route choice estimation difficult

from a statistical and practical point of view. For instance, considering route

choice as a choice among discrete alternatives, it is clear that the choice set

can be very large. Another problem is that we would like to consider paths

with many overlapping paths as close substitutes. This is typically achieved

by allowing for a flexible correlation structure among paths. The focus in

this paper is to address two further problems. First, the data may be sparse,

being sparsely sampled in time and space. For route choice estimation, this

is a problem since the path cannot be fully observed. Second, the sampled

points may be sampled with errors. The purpose of this paper is to address

all these problems using an indirect inference approach.

In this paper, we focus on GPS data, which has previously attracted
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attention in the transportation science literature (see, e.g. [5], [9], [21], [19]

and [20]). GPS technology allow for collection of large data sets regarding

mobility and route choices of individuals (Jan et al. [13]). Methods and

algorithms associated with the use of sparse GPS data has also previously

been addressed by Lou et al. [17]. However, it should be noted that the

advent of passive monitoring of route choices has provided different data

collection methods (Murakami and Wagner [20]), and that the estimation

methods proposed in this paper can equally well be applied to data sets

collected using other technologies.

Considering the statistical estimation problem, route choice models can

be formulated and estimated in a discrete choice framework. In this frame-

work, the notion of choice sets is fundamental. Typically, in a route choice

context, the potential choice set is very large, and it is infeasible to enumer-

ate in realistic sized applications. Different approaches have been suggested

to deal with this problem. Sometimes it is possible to arrive at statistically

consistent estimates by sampling the choice set, for instance in the case of

multinomial logit models (McFadden [18], Frejinger et al. [10]), or Multi-

variate Extreme Value models (Guevara [12]). To deal with the problem

of correlation between overlapping paths, path-based approaches using dis-

crete choice methods are elaborated in the literature, see, e.g., Ben-Akiva

and Ramming [3], Ben-Akiva and Bierlaire [2], and Cascetta et al. [4]. Al-

ternatively, one may view a route as a sequence of links (Dial [6]). Link costs

are assumed to be random (at least to the modeler), and the path cost is

assumed to be given by the summation of link costs. In practice, Fosgerau

et al. [7] and Karlström et al. [14] use such link-based route cost models.

In this approach, the random terms are associated to the links, rather than

the paths, which induce a natural correlation structure between paths, since

overlapping paths are sharing the same random components. Also, the ap-
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proach allow for statistically consistent estimation with consideration of the

full choice set.

The link-based approach is used in this paper as well, where it is assumed

that the individual is choosing the shortest path. While route choice models

traditionally are estimated using observations of chosen paths, the estimator

proposed in this paper enables the estimation of flexible route choice models

using sparse GPS data, with only partially observed paths. Most closely

related to our work are Frejinger and Bierlaire [9] and Newman et al. [21],

who also consider GPS data for route choice estimation. Yet, our approach

allows for the estimation of models with a flexible correlation structure,

full choice set consideration, and corrects for potential bias due to data

manipulations.

The estimation procedure that is proposed in this paper is based on indi-

rect inference, which is a simulation based estimation method (Gourieroux

et al. [11], and Smith [22]). The methodology is useful even when the like-

lihood functions are intractable or even impossible to specify. Like other

simulation-based methods, a major prerequisite of the indirect inference ap-

proach is that it should be possible to simulate data from the model of

interest for different values of the parameters involved.

The main characteristic of the indirect inference method is the use of an

approximate or auxiliary model in order to form a criterion function. The

number of parameters of auxiliary models has to be more or at least equal

to the number of parameters in the real models. There are two requirements

for choosing an auxiliary model. First, it should be easy to estimate, since

we want to get help from an auxiliary model to estimate the auxiliary pa-

rameters and run the auxiliary model repeatedly. Secondly, the auxiliary

model has to be flexible enough to capture the variation of the observed

data. The aim of the indirect inference is to select parameters for the model
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of interest such that the simulated and observed data look the same from the

auxiliary model’s point of view. Karlström et al. [14] proposed an indirect

inference estimator for the estimation of flexible route choice models, in this

paper the methodology is extended to address the problem of sparse GPS

data with measurement errors.

2 METHOD

We propose a method to estimate a model with random link costs, i.e. a

flexible route choice model. Instead of doing hard computations to find

the maximum likelihood estimate, our method is based on the principle of

indirect inference and we use the fact that the true model can be easily

simulated. In this indirect approach, by choosing the parameters in the true

model such that the simulated data set looks like the real-world data set

when we examine it through the lens of an auxiliary model, we will be able

to consistently estimate the parameters of the true model. First, we specify

the model that we want to estimate, and then our indirect inference based

estimator will be introduced. In subsequent sections we will examine the

properties of the estimator in Monte Carlo simulation experiments.

2.1 A flexible route choice model

In this part, the model that is used for the proposed route choice problem

is presented. We have the network N which is defined by sets of nodes

(vertexes) v and links (edges) l. These two together indicate the direction of

the link. Each link is defined as a connector of a source node to a destination

node. Let s(l) and d(l) denote the source node and destination node, of a

link, respectively. The path between a source node and a destination node

could be seen as a sequence of links, where s(l1) = vo, d(lj) = s(lj + 1) for
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j = n− 1, and d(ln) = vd. Here, vo denotes the origin node of the path and

the destination node is vd.

Hence, a path may be defined by the index of links π = {l1, · · · , ln}.

Each link is associated with a vector of its own characteristics, represented

as xl, and a strictly positive cost function c(xl, εli;β).

The cost function is defined as the cost associated with each link l for

each individual i. To clarify, the cost function includes different components.

εli is an individual specific random link cost and β is the vector of coefficients

for the links, ought to be estimated, and xl is the corresponding vector of

link characteristics. In this paper, the cost function is assumed to have a

linear deterministic component.

c(xl, εli) = βxl + εli, (1)

It should be noted that, since the deterministic part and the random

one are additively separable, we have the cost function as two separate

parts showed in the formula above. So far, the cost function of each link

can be computed by the procedure mentioned above. As we know, each

path consists of a number of links; thus, another assumption is that the cost

function of each path π is additive in link costs. In other words, the cost of

a path can be attained from the summation of all the link costs through the

path. Hence, the cost for individual i to pass a path π is computed by

Ci(π) =
∑
l∈π

c(xl, εli). (2)

Clearly, route costs are naturally correlated for overlapping routes since they

share links.

Furthermore, we assume the travelers know both the link characteristics

and their idiosyncratic random utility εli regarding their passed links. Since

the choice makers tend to maximize their utility, they will choose the path
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with the lowest generalized cost in this model

πi = arg min
π∈Ω(voi ,v

d
i )
Ci(π). (3)

Assuming voi as the origin and vdi as the destination, Ω(voi , v
d
i ) represents

all the possible paths between the traveler’s origin and destination i.e. it

represents the choice set.

The random part εli can have an arbitrary distribution like normal,

gamma or exponential distributions. When implementing the model, we

assumed that the random cost component followed a truncated normal dis-

tribution. It is common to introduce a constraint on the values that the cost

function can return, in order to avoid negative link costs. Here we assumed

that εli follows a truncated standard normal distribution using only the pos-

itive values. Given the above assumptions, the prerequisites of the Dijkstra

shortest path algorithm (always necessitates a positive link cost on the net-

work) are satisfied. Thus, in order to simulate path choices in accordance

with (3), we apply the Dijkstra algorithm.

The final aim of this paper is to estimate β in equation (1). The likeli-

hood function for this model is complicated and hard to estimate; therefore,

a simpler method is required. We employ a simulation based strategy built

on indirect inference, for this purpose we simulate GPS points based on

routes provided by the flexible route choice model.

2.2 Simulating GPS data

For simulating GPS data, we assume that all the devices in our study have

similar error characteristics. Furthermore, there is likely some error in the

mapped locations of the roads, which contributes to the deviation between

the measured location and the location on the map. We model the overall

error, in latitude and longitude, as a two-dimensional symmetric Gaussian
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with zero mean. This means that we require an estimate of the standard

deviation of the distance between the measured location and the actual point

on the map.

As explained in the introduction part, we consider low frequency GPS

points as observed trip data. Given any parameter β we can simulate routes

as described in the previous section. Then, the following algorithm is imple-

mented to create a set of GPS points corresponding to each trip. The used

procedure is defined through the following steps:

1. Given some simulated path πi in concordance with (3).

2. The average speed of cars in the network is assumed to be 32 km/h.

Based on this, the location of a virtual car is determined every s sec-

onds on the simulated path.

3. In order to consider GPS errors, The locations of the car are distorted

by adding a measurement error. We assume that the distance error

follows a symmetric normal distribution with zero mean and a given

standard deviation.

4. Add the simulated GPS errors to the simulated locations of vehicles

to obtain simulated GPS points.

Now, given GPS data we need a methodology to match GPS points to

specific paths. This might seem like a detour, first we generate paths by

the route choice model, then simulate GPS-points given those paths, and

now we suggest that those GPS-points should be matched back to some

paths. Yet, this is an important step to take. Our observations are in GPS

format and so are the simulated GPS points. Then, we make sure that the

same data manipulations are performed on both real data and simulated

data, this will allow the indirect inference estimator to correct for any bias

introduced through these data manipulations.
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2.3 Map-Matching

As a natural characteristic, the points reported through the GPS do not

match directly to a network on a digital map. Therefore, we have to apply

some method to map the reported GPS points on the network. Krumm et

al. [16] introduce a simple nearest road matching as a practical solution in

order to map collected GPS points to the road data. Through the algorithm,

a number of paths, close to the GPS points, which start from the origin

and end at the destination are considered. The total distance between the

measured points and the nearest point on each considered path is computed.

The path with the minimum calculated distance is stated the matched path.

In this paper, we use this method for map-matching.

The following algorithm is used to match a set of GPS points corre-

sponding to each trip to the road map.

1. Take the network data and the given set of GPS points.

2. Identify the origin and destination of the trip.

3. Calculate the summed distance between GPS points and potential

paths.

4. Find the path with minimum distance to GPS points and return as

the matched path

2.4 Indirect inference

In this section, the indirect inference method to estimate the proposed route

choice model is introduced. Indirect inference make use of an auxiliary

model, which should be easily estimated, yet rich enough to capture relevant

variation in the data. In the context of route choice modeling we have a

number of natural candidates which could be used as auxiliary models, e.g.

the multinomial logit (MNL), path-size logit [1] or C-Logit [4].
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In this study, the multinomial logit (MNL) model is used as an auxiliary

model, with the objective of showing that even a simplistic auxiliary model

allow us to consistently estimate our flexible route choice model. As stated

by Smith [22]: ” The auxiliary model does not need to be an accurate

description of the data generating process. Instead, the auxiliary model

serves as a window through which to view both the actual, observed data

and the simulated data generated by the economic model: it selects aspects

of the data upon which to focus the analysis”.

Our MNL-model use the same number of parameters as the true model.

From the MNL perspective on route choice, each individual i is choosing a

route r from a set of alternative routes Ii(o, d), each route is given a utility

of Uri as follows:

Uri = θXr + εri , (4)

where θ is the vector of the auxiliary parameters , Xr represents route

characteristics and εri are assumed i.i.d Gumbel distributed. Ii(o, d) is the

auxiliary individual specific choice set, representing some paths between the

origin and the destination.

Considering that our auxiliary model is an MNL model, we need to

generate choice sets corresponding to the origin-destination pairs which are

found in data, in order to estimate the auxiliary parameter. To generate

the auxiliary individual specific choice sets, a pseudo-universal choice set

is generated by simulations of shortest paths from the flexible route choice

model, for each of the relevant OD-pairs. We use random samples from the

pseudo-universal choice sets as the individual specific choice seti. Regarding

iIn our application of th estimator we create pseudo-universal choice sets with a maxi-

mum size of 800 paths, out of which 201 are sampled into the auxiliary individual specific

choice set.
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the proposed auxiliary model, estimations of the auxiliary parameter θ using

choice set sampling are rather easy to retrieve, but in our case they are

biased due to misspecification. Still, based on the experience of Karlström

et al. [14], we can apply this auxiliary model to the real and simulated data

sets and arrive at an estimate of the true parameters β.

In principle, there is a correspondence between the parameters of the

flexible route choice model and the auxiliary parameters which is mani-

fested through a smooth binding function θ(β). As we shall see, indirect

inference exploits the binding function, for this purpose we have to explore

this function. This exploration is done by simulations. Consider a set of

arbitrary structural parameters βm,m = 1, · · · ,M which are drawn from

some specified domain, corresponding to each parameter M different data

sets can be simulated by means of our flexible route choice model, and GPS

point simulation. Provided the simulated GPS points we can employ the

map-matching method in order to convert GPS data into matched path

choices. We denote the set of matched paths as ỹ, and these matched obser-

vations are actually depending on the data generating parameter βm. Thus,

all matched simulated choices ỹ(βm) in a particular data set is generated

by the same parameter βm. For any such parameter we can estimate the

corresponding auxiliary parameter by conventional maximum likelihood

θ̃m(βm) = argmax
θ
L(ỹ(βm);x, θ). (5)

The mapping θ̃m(βm) is discontinuous due to the discrete nature of the

matched paths ỹ(βm). A smooth binding function is estimated by local

regression or OLS, based on M different given values of βm and their corre-

sponding θ̃m(βm). We denote this smooth binding function by θ̃(β).

The aim of the indirect inference approach is to select parameters of

the flexible route choice model such that the simulated and observed data

look the same from the auxiliary model’s point of view. We use the likeli-
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hood function based on the auxiliary model, observed GPS data which are

matched to paths (y), and network characteristics (x)

β̂ = argmax
β
L(y;x, θ̃(β)). (6)

That is, rather than directly stating a criterion function for the model of

interest, we use the criterion function of a much simpler, misspecified, MNL

model in order to indirectly infer the parameter of the underlying data gen-

erating process. Again, we make sure that the same data manipulations are

performed on both real data and simulated data, we perform map-matching

to retrieve the matched paths both in the case of real data (y) and for

simulated data (ỹ(βm)). Therefore the map-matching procedure should be

viewed as an integral part of our auxiliary model. Proceeding in this man-

ner will allow the indirect inference estimator to correct for potential biases

introduced through such data manipulations. The above description of the

indirect inference approach follows closely to that of Keane and Smith [15].

The main difference from their approach is that we use OLS regression of

the binding function to smooth the objective function.

2.5 Estimation algorithm

In this section, we provide a summary of the proposed estimator in the form

of an algorithm. Since a simple MNL model is proposed as our auxiliary

model and the input data sets for the estimation of this model preferably

should be in path format (Our observed data is in the GPS point format),

we need to guess the traversed paths based on the observed GPS data. For

this purpose, we use the map-matching method in section 2.3 in order to

translate the GPS data into paths.

The main characteristic of our study is the fact that we consider low

frequency GPS data with measurement errors as observed trips data. In
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order to estimate a flexible route choice model given such data we take the

following steps:

1. Given GPS points (gpobs)

2. Use the map-matching method to find unique matched paths corre-

sponding to the GPS points y.

3. Draw M points βm from a given domain D.

4. Simulate N path choices.

5. Simulate GPS data.

6. Match simulated GPS to N path observations for each βm, M different

data sets ỹ(βm) are generated.

7. Employ the auxiliary model to compute the corresponding auxiliary

parameters θ̃m(βm).

8. Estimate the smooth binding function by the data {θ̃m, βm}Mm=1 using

OLS regression.

9. Insert the estimated binding function into equation (6) and find the

indirect inference estimate of the true parameter β̂.

The final algorithm is defined below:
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Indirect inference route choice estimator

Require: network N

Require: Individual choice sets Ii(o, d)

Require: Observed GPS points (gpobs)

for m=1,· · ·,M do

Draw βm ∈ D

for i = 1, · · · , N do

Generate simulated route choice πi

Generate simulated GPS data given route πi

end for

Do map-matching and state simulated matched

paths ỹ(βm)

Estimate auxiliary parameters

θ̃m(βm) = argmaxθ L(ỹ(βm);x, θ)

end for

Given {θ̃m, βm}Mm=1, estimate θ̃(β) using linear OLS

Do map-matching for gpobs to get matched paths y

Estimate β̂ = argmaxβ L(y;x, θ̃(β))

3 Case study

Using a network representing the real world road network of Borlänge city,

Sweden, we simulate a data set using the flexible route choice model, and

use our developed estimator to see whether the parameter can be recovered.

For the illustrations we use the network of Borlänge city as described by

Frejinger and Bierlaire. [8]. The network contains 3077 nodes and 7459

links.

Suppose that link length Ll is the only attribute which is taken into
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account. Hence, the cost of traversing link l, for individual i is given by

c(Ll, εli) = βLl + εli, (7)

and the corresponding cost of a path is simply formed by adding link costs.

Then, individuals are assumed to choose the shortest path. This summarizes

our flexible route choice model. The methodology introduced in this paper

can be used for estimating cost functions including multiple attributes, see

Karlström et al. [14] for such indirect inference estimation based on path

observations.

For the purpose of indirect inference, an auxiliary model is introduced.

This model is assumed to take the standard MNL form, where the utility of

a path r is given by

Ur =
∑
l∈r

θLl + εli (8)

Given the network and the route choice model, we may assign a value

to β, (say β = 1) and simulate data sets. First we simulate N = 3000

paths, then, given paths we simulate GPS observations along those paths.

Thereafter, the proposed estimator based on indirect inference including

map-matching is applied. We investigate if the estimated parameter is con-

sistent with the assigned parameter of the data generating process (i.e. 1).

Briefly, in the next section, consistency of the proposed estimator is evalu-

ated, does it retrieve the ”unknown” value of β?

4 Results

In this section we provide Monte Carlo evidence to show the feasibility

and accuracy of the proposed estimator. In a real world application of the

estimator the initial guess of the parameter domain D would have to be

chosen arbitrarily. It may be the case that the chosen domain does not
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cover the estimate of the true parameters, in addition, the nonlinearity of

the true smooth binding function is not captured by the local regression, thus

our local estimate of the binding function may provide a poor estimate. As

a remedy, in practice, Karlström et al. [14] implement their estimator in

a stage-based format. For each stage the interval of the domain shrinks,

and the domain is recentered around the estimate provided by the previous

stage. Thus, the first stage may provide crude estimates, but the estimates

are improved through the stages.

In this paper, since we know the ”true” parameter, we skip stages and

assume that we are in a last stage and that an appropriate interval for

generating the binding function is known, it is D = (0.9, 1.1). The valuation

of the link length attribute, β, is estimated based on a binding function

which itself is estimated using M = 5 sample points βm drawn from D.

For each such βm, θ̃m is estimated based on N=3000 simulated paths. The

”observed” paths also contains N = 3000 routes which are created based

on β = 1, thereafter GPS related spatial error is introduced following a

normal distribution εGPS ∼ N(0, σ) for various levels of σ. The estimator

applies a pseudo-universal choice set of size 800, and the size of the auxiliary

individual specific choice sets is 201.

All Monte Carlo statistics are calculated based on 10 independent es-

timations of the parameter β. That is, we create ten independent sets of

”observed” GPS data and then we apply the estimator once to each of these

data sets.

In Table 1 we report the Monte Carlo evidence with a GPS sampling

interval of 30 seconds. The true parameter is assumed to equal 1. GPS

errors are assumed to have a Gaussian distribution with standard deviation

of 0, 10, 25, or 50 meters. As is evident, the estimator is quite precise also

with rather large GPS errors. For each of the estimates, the true data gen-
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Table 1: Monte Carlo evidence: Estimates of β for different levels of GPS

related errors, with GPS sampling every 30 seconds.

GPS error(m) 0 10 25 50

Mean 0.99 0.96 1.02 1.01

Std 0.02 0.02 0.04 0.01

RMSE 0.02 0.05 0.04 0.45

ZETA -0.73 -2.07 0.50 0.50

erating parameter falls within the 95% confidence interval of the estimated

parameter. Thus the true value β = 1 cannot be rejected.

Table 2: Monte Carlo evidence: Estimates of β for different levels of GPS

related errors, with GPS sampling every 120 seconds.

GPS error(m) 0 10 25 50

Mean 1.02 1.01 1.02 0.99

Std 0.02 0.02 0.02 0.02

RMSE 0.03 0.02 0.03 0.02

ZETA 0.87 0.62 1.04 -0.68

In Table 2 we report corresponding results where we assume that the

GPS points are sampled every 120 seconds. The precision is good, with

somewhat weaker results in the case where the GPS error is also large. Still,

the true parameter is not rejected at the 95% level, this holds for all the

estimates.

In Table 3 the results are compared for different sample sizes, N =

{1000, 2000, 3000}, for the cases where GPS points are sampled every 120
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Table 3: Monte Carlo evidence: Estimates of β for different observed sample

size, with GPS sampling every 120 seconds and 10m and 25m GPS error.

GPS error 10 meters 25 meters

Observed sample size 1000 3000 1000 3000

Mean 1.00 1.01 1.09 1.02

Std 0.03 0.02 0.05 0.02

RMSE 0.03 0.02 0.10 0.03

ZETA 0.14 0.62 1.76 1.04

seconds and the GPS error has a standard deviation of either 10 or 25 meters.

The accuracy of statistical parameters improves as the sample size grows.

Overall, the results in Table III show that the estimated parameter vector

converges to the true value of the data as observed sample size increases.

5 CONCLUSIONS

In this paper we have proposed an estimator, for a flexible route choice

model, using GPS data sampled with a low frequency. Route choice is a

central concept both with regard to the analysis of travelers’ behavior and

the effect of such behavior upon transport systems. When the travel data is

collected with low frequency, it is unknown which path has been traversed

between the GPS data points. Moreover, GPS data has measurements error.

These characteristics may introduce bias into the estimates governing route

choice behavior.

We have designed an algorithm to consistently estimate a flexible route

choice model in the presence of sparse GPS data and measurement errors.

The indirect inference method is applied as a structured procedure to esti-
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mate a model with random link costs, where the likelihood function is diffi-

cult to evaluate. Rather, we make use of the much simpler likelihood func-

tion related to the auxiliary model. Estimation is performed through simu-

lation. By ensuring that the same data transformations (map-matching) are

performed on both real and simulated data, the proposed estimator is able

to correct the estimates for bias otherwise caused by such transformations.

The main conclusion is that indirect inference is a useful option in the

tool box for route choice estimation which can be used for estimating ob-

served path using low frequency GPS sampling data with measurement er-

rors. The Monte Carlo evidence show that, applying the indirect inference

approach to route choice estimation is a worthwhile solution.

In the approach used in this paper, we do not utilize time stamps of

GPS observations. This provides crucial information if we want to estimate

link travel time or link speed profiles. While our results show that we are

able to estimate a consistent route choice model without detail assumption

about speed profiles, time stamps will provide information about speed (or

travel time). The assumption of known distribution of GPS-errors is another

crucial feature of the current approach. Both these issues will be addressed

in future work, with the objective of estimating link specific speeds or travel

times.
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