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Abstract 

In this paper we study the effect of contract design on the performance of railway 

maintenance in Sweden, using a panel data set over the period 2003-2013. The marginal 

effect of incentive intensity is estimated, showing that the power of incentive schemes 

improve performance as measured by the number of infrastructure failures. In addition, the 

performance incentive schemes result in a reallocation of effort from failures not causing train 

delays to failures causing train delays. 

 

1.0 Introduction 

Government agencies often procure goods and services instead of producing it in-house. This 

procurement accounts for a significant part of national economies, with estimates at 19 per 

cent of the gross domestic product (GDP) in the European Union (European Commission 

2011). Cutting costs and improving quality are frequently stated goals when introducing 

competitive tendering and contracting of services previously offered by a state-owned 

monopoly. However, careful contract design is required in order to achieve the goals of such 

reform, with appropriate specification and monitoring of quality along with incentive schemes 
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to deal with moral hazard and adverse selection. Whether or not different contract designs 

have the desired effects needs to be tested empirically, both for policy reasons and to assess if 

theoretic arguments for certain designs are valid in the current case. 

This paper contributes to this line of research by studying the incentive structures in 

railway maintenance contracts in Sweden. More specifically, the purpose with this paper is to 

provide evidence on the effect of incentive intensity on infrastructure performance as well as 

the effect of tilted performance incentive schemes. 

Sweden chose to gradually expose its maintenance of railways to competitive 

tendering in 2002. One objective of the transfer from in-house to tendered production of rail 

maintenance was to provide scope for innovation (Banverket 2000). To do so, firms 

(contractors) are given degrees of freedom by the contracts: most of the maintenance contracts 

are said to be1 outcome or performance based, meaning that the contractor is not told exactly 

which (or the level of) activities that are to be carried out. A fixed payment is received by the 

contractor who needs to meet a set of requirements with respect to the quality of maintenance. 

The purpose is to give the contractor an incentive to develop the maintenance production. We 

are therefore in a second-best situation where the client (the IM) can (and has in this case 

chosen to) observe the outcome rather than prescribing the input. This can, however, create a 

moral hazard situation as the contractor’s actions may not be optimal for the client. In 

addition, the contractor can obtain a higher rent when information about its efficiency 

(technology) is not known to the client, which is the problem of adverse selection. This 

asymmetry in information means that the client has to make a trade-off between inducing 

effort and extracting rent from the contractor. The power of the incentive scheme is a central 

parameter in this trade-off (see Laffont and Tirole 1986). Moreover, the complexity of the 

project can affect the preferred power of the incentive scheme. Bajari and Tadelis (2001) 

                                                           
1 This formulation is used in view of the extensive reference to regulations and provisions in the contracts. 
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points out that a cost-plus contract (i.e. low powered contract) is preferred when the projects 

are complex, while fixed price contracts can be better for simple projects.2 

One way of providing incentives is to use a performance incentive scheme in which 

the contractor receives an award and/or penalty for its performance. A contractor will make a 

trade-off between different tasks within a project if these are rewarded differently and the 

tasks are substitutes; see for example the seminal paper by Holmström and Milgrom (1991). 

Indeed, the performance incentive schemes in the maintenance contracts in Sweden are tilted 

(described in section 2.1), which can affect the attention to different tasks and consequently 

the outcome of the project. 

The theoretic work on contracts and information asymmetry in the principal-agent 

framework is extensive (for textbook treatments, see for example Laffont and Tirole 1993, 

Laffont and Martimort 2002 and Salanié 2005). Wunsch (1994) is an early example of an 

empirical study on contract design within the field of procurement and regulation, where 

menus of linear contracts are calibrated for transit firms. Gagnepain and Ivaldi (2002) study 

the regulatory schemes for French urban transport and compare these to the optimal policies, 

while Roy and Yvrande-Billon (2007) use the same study object (in a different time period) to 

estimate differences in technical efficiency between regulatory schemes and fixed-price and 

cost-plus contracts. Other examples within the transport field are the study by Dalen and 

Gomez-Lobo (2003) - showing that high-powered incentive schemes reduce operating costs 

for bus companies in Norway - and the study by Piacenza (2006) with similar results for 

Italian public transport. 

To the author’s knowledge, an econometric test of the effect of incentive intensity has 

not been made in field of rail infrastructure management. Nonetheless, Vickerman (2004) 

provides an exploration of incentives in transport infrastructure maintenance, and a case study 

                                                           
2 A project that is complex such that quality is ex ante non-contractible might even be better to produce in-house 

instead of being contracted out (Hart et al. 1997). 
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on incentives in rail maintenance contracts is made by Stenbeck (2008). Moreover, studies on 

the power of incentive schemes in procurement and regulation usually compare different 

types of contracts (for example fixed-price contracts compared to cost-plus contracts). We can 

however make use of the variation in the incentive intensity in the cost-reimbursement 

contracts that are used for railway maintenance services in Sweden. This enables an 

estimation of the marginal effect of incentive intensity within the same contract type. 

There is a wide literature on the effects of performance payments; see for example 

Lazear and Oyer (2013) for a review of theories and empirical findings on incentives and 

performance (among other topics) in personnel economics.3 A recent study on procurement 

and performance incentives is made by Lewis and Bajari (2014), showing that penalties 

induced effort in high-way construction contracts (with welfare improvements and low 

contractor costs according to simulations). Our study adds to this literature by estimating the 

effects of performance incentives in rail infrastructure management, focusing on the 

reallocation of efforts. 

The outline of the paper is as follows. Section 2 describes the main ingredients of the 

railway maintenance contracts that are important for this study. The research questions and 

modelling approach are set out in section 3, where we also specify the models we estimate. A 

description of the data is provided in section 4. The results are presented in section 5 followed 

by a discussion of our findings in section 6. Section 7 concludes. 

 

  

                                                           
3 Other examples are Rosenthal et al. (2006) and van Herck et al. (2011) who provide reviews of empirical 

evidence in the health sector, Podgursky and Springer (2007) present evidence in the education sector and 

Devers et al. (2007) is a review of evidence on executive pay and firm performance. 
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2.0. Maintenance contract design 

Most of the railway maintenance contracts in Sweden are performance-based contracts.4 

These contracts are a mix between a fixed price and a cost-plus contract, i.e. a fixed payment 

is received for certain activities while others have variable payments. In the competitive 

tendering of maintenance contracts, the firms place a bid that contain prices for activities with 

variable payments and a fixed payment they require for other activities. The procedure and 

timing is the following. (1) The client provides a description of the maintenance area and 

specifies the expected amount of activities with variable payments that need to be performed 

each year and which of these activities that entail a fixed payment. (2) The firms submit bids 

comprising one fixed component as well as a unit price component, i.e. a unit price on each 

variable activity in the contract. (3) The bid with the lowest total cost wins. 

Most contracts have a fixed payment for the (expected number of) activities required 

when an infrastructure failure occurs. However, the cost for each activity is capped; a clause 

states when the cost of rectifying a failure is included in the fixed payment to the contractor. It 

also indicates that when the cost is higher than the cap, the contractor is paid according to the 

variable cost for the amount above the specified cost level. For intuition, consider the 

following example illustrated in Figure 1: the contractor receives a fixed payment for 

rectifying failures during one year. A clause states that if the cost of rectifying one failure is 

above 10 000 SEK, the contractor will be paid according to the direct cost of rectifying that 

failure (cost for labor and material resources according to prices stated in the contract) for the 

amount above 10 000 SEK. Hence, if the total cost of rectifying one failure is 15 000 SEK, 

the contractor will be paid 5 000 SEK in addition to the fixed payment. This reimbursement 

rule can vary between contracts, creating different levels of power in the incentives. The same 

                                                           
4
 A few contracts are so called design-bid-maintain contracts in which the contractor mainly executes the 

activities set up by the client. These contracts are used for newly built railway lines. 
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reimbursement rule in each contract is used for maintenance activities that prevent 

infrastructure failures, i.e. for fixing a defect before it becomes a failure. 

 

Figure 1 – Illustration of the reimbursement rule 

 

2.1 Performance incentive schemes 

Apart from capping the contractor’s cost for some activities, the contracts also include a 

bonus and/or penalty linked to the number of failures in the maintenance area. These are tilted 

towards failures that cause train delays, which imply that an average train delay failure will 

have a larger impact on the bonus or penalty compared to an average failure not causing a 

train delay. For example, a contract using a performance index has the weight 1.8 for train 

delays while the weight is 1 for other failures and 0.2 for a measure of track geometry. The 

performance equation is presented in the appendix. Note that a train delay failure will affect 

the train delay outcome and the outcome for the number of failures - that is, it affects two 

parts of the equation and thus have more weight than 1.8 in the performance equation. Other 

10K SEK 

𝐶𝑜𝑠𝑡 𝑏𝑜𝑟𝑛𝑒  
𝑏𝑦 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟: 
 𝑐(𝑓) 

𝑅𝑒𝑖𝑚𝑏𝑢𝑟𝑠𝑒𝑚𝑒𝑛𝑡  
𝑟𝑢𝑙𝑒,𝑅: 
10K SEK 

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒,  

𝑐𝑎(𝑓) 

15K SEK 
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contracts have bonuses and/or penalties linked to target values for train delays while failures 

not causing a train delay are excluded.5  

In summary, the contracts are designed so that a contractor prefers a failure that is not 

causing train delays instead of a train delay failure. Note that this performance incentive 

scheme implies that a failure expected to cost more than the cost in the reimbursement rule 

(illustrated in Figure 1) has a probability of imposing an extra cost for the contractor if not 

rectified in time. 

 

3.0 Research questions and modelling approach 

In this paper, performance refers to the number of infrastructure failures that needs to be fixed 

immediately or within two weeks. There are other types of infrastructure quality indicators 

such as “minor” deviations in track geometry or other defects that require a preventive 

maintenance, i.e. activities that prevent infrastructure failures. Thus, a lack of preventive 

maintenance will result in a failure that requires corrective maintenance. 

Given the design of the contracts, we formulate the following research questions: 

 

1. Do variations in the reimbursement rule affect the performance of maintenance 

contracts? 

2. Do performance incentive schemes tilted against train delays have an effect on the 

relationship between the number of failures causing train delays and other failures? 

 

Model 1, presented in section 3.1, addresses the first research question. In section 3.2 we 

present Model 2 that addresses the second research question. 

                                                           
5 There are also contracts that do not have any bonus connected to train delays. However, all procured 

maintenance contracts have a penalty for the contractor if a time limit to rectify a train delay failure is exceeded. 

For example, the penalty can be 10 000 SEK if it takes more than five hours to rectify a train delay failure. 
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3.1 Model 1 

We express the cost of a maintenance project as 

𝐶𝑖𝑗 = 𝑀𝑖𝑗(𝑋, 𝑒) + 𝐶𝐴𝑖𝑗(𝐹),      (1) 

where 𝑖 =contract and 𝑗 =contractor.  𝑀𝑖𝑗(𝑋, 𝑒) is preventive maintenance and is a function 

of 𝑿𝑖 which is a vector of variables for traffic and infrastructure characteristics such as track 

length and rail age. We also consider preventive maintenance to be a function of the 

contractor’s effort level 𝒆 = (𝑒1, 𝑒2, … , 𝑒𝑛), where 
𝜕𝑀𝑖𝑗(𝑋,𝑒)

𝜕𝑒
> 0.  𝐶𝐴𝑖𝑗(𝐹) is the total 

corrective maintenance cost which is a function of the number of failures per maintenance 

project.  

The number of failures is represented by  

𝐹𝑖𝑗 =  𝛼𝑖  +  𝜷𝑿𝑖 + 𝛾𝑗𝑀𝑖𝑗(𝑋, 𝑒) + 𝜀𝑖𝑗,   (2) 

where 𝛼𝑖 is a constant and 𝜷 is a vector of parameters for the effect of the explanatory 

variables 𝑿𝑖. 𝜀𝑖𝑗 is an error term. 𝛾𝑗 is a parameter indicating the effect of preventive 

maintenance on the number of failures.  

With the reservation of the caveat indicated by footnote 1, the level of preventive 

maintenance is not a direct decision made by the client in performance based maintenance 

contracts. Instead, the (winning) contractor receives a fixed payment, 𝑊𝑖𝑗 , corresponding to 

the bid submitted, and then decides on a level of effort which generates 𝑀𝑖𝑗(𝑋, 𝑒) and results 

in a disutility for the contractor Ѱ(𝑒).6 

Preventive maintenance’s marginal effect on the cost of the project is decided by 𝛾𝑗. 

Hence, this is the contractor’s efficiency parameter. It is also assumed that each contractor 

knows its own efficiency and that this parameter is continuous. 

                                                           
6 We assume Ѱ(𝑒) is convex in effort. 
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As described in section 2, there is a reimbursement rule that states the maximum total 

cost per failure the contractor will bear. The corrective maintenance cost for a failure borne by 

the contractor is therefore 

𝑐𝑖𝑗𝑓 = {
𝑅𝑖,            𝑖𝑓 𝑐𝑎𝑖𝑗𝑓 ≥ 𝑅𝑖

𝑐𝑎𝑖𝑗𝑓                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,      (3) 

where 𝑓 = 1, . . , 𝐹 failure, 𝑅𝑖 is the reimbursement rule, 𝑐𝑎𝑖𝑗𝑓 is the accounted cost of 

rectifying a failure (see also Figure 1), where ∑ 𝑐𝑎𝑖𝑗𝑓
𝐹
𝑓=1 = 𝐶𝐴𝑖𝑗(𝐹). The contractor’s profit is 

then 

𝜋𝑖𝑗 = 𝑊𝑖𝑗 − [𝑀𝑖𝑗(𝑋, 𝑒) + ∑ 𝑐𝑖𝑗𝑓
𝐹
𝑓=1 ],     (4) 

This implies that the contractor bear a share 𝑏 ∈ [0,1] of the cost of rectifying a failure, which 

is determined by the relationship between ∑ 𝑐𝑖𝑗𝑓
𝐹
𝑓=1  and 𝐶𝐴𝑖𝑗(𝐹); that is 𝑏𝑖𝑗 =

∑ 𝑐𝑖𝑗𝑓
𝐹
𝑓=1

𝐶𝐴𝑖𝑗(𝐹)
. We 

can therefore express (4) as  

𝜋𝑖𝑗 = 𝑊𝑖𝑗 − [𝑀𝑖𝑗(𝑋, 𝑒) + 𝑏𝑖𝑗 ∙ 𝐶𝐴𝑖𝑗(𝐹)],    (5) 

which is an incentive contract where 𝑏𝑖𝑗 is the power of the incentive scheme. From equation 

(3) it is clear that an increase in the reimbursement rule 𝑅𝑖 would increase the corrective cost 

borne by the contractor (𝑐𝑖𝑗𝑓) for failures that cost more to rectify than the previous 

reimbursement rule, ceteris paribus. The power of the incentive scheme will therefore 

increase with the reimbursement rule:  
𝜕𝑏

𝜕𝑅
> 0. 

When the maintenance project is tendered, a contractor considers its objective function 

that it wants to maximize  

max𝑊,𝑒  𝑈𝑗 = 𝜋𝑖𝑗 − Ѱ(𝑒),  subject to 𝜋𝑖𝑗 − Ѱ(𝑒) ≥ 0,    (6) 

The setting outlined in equations (1)-(6) implies that an increase in the reimbursement rule 

increases the comparative advantage of the efficient contractor in the competitive tendering of 

a maintenance contract (causing a selection effect): 
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- The information about 𝑅𝑖 in the quote for bids is one point of departure for the bid 

submitted. A higher  𝑅𝑖 will increase the share of cost that is borne by the contractor 

per failure, and will therefore reduce the contractor’s utility (
𝜕𝑈

𝜕𝑅
= −

𝜕𝑏

𝜕𝑅
𝐶𝐴𝑖𝑗(𝐹) < 0). 

The consequence is that the higher reimbursement rule corresponds to submitting a 

higher bid. However, since contractors have different efficiency levels, 𝛾𝑗, the 

expected marginal cost savings of efficiency increases with the reimbursement rule, 

𝜕2𝑈

𝜕𝑅𝜕𝛾
= −

𝜕((𝜕𝑏 𝜕𝑅⁄ )𝐸[𝐶𝐴])

𝜕𝛾
> 0, as the expected total cost of rectifying failures 𝐸[𝐶𝐴] =

𝐸[𝐸[𝐶𝐴|𝐹]] is decreasing with the efficiency level 𝛾𝑗, ceteris paribus.  

 

Equations (1)-(6) also imply that the level of preventive maintenance increases with the 

reimbursement rule: 

- When a contract has been awarded, the contractor will choose an effort level that 

generates preventive maintenance. This decision will depend on 𝑅𝑖. A contractor that 

bears a larger share of the cost will clearly have a stronger incentive to reduce this 

cost, which it can do via 𝑀𝑖𝑗(𝑋, 𝑒). Indeed, by taking the cross partial derivative of the 

contractor’s utility with respect to the reimbursement rule and the effort level 

(generating preventive maintenance)  
𝜕2𝑈

𝜕𝑅𝜕𝑒
= −

𝜕((𝜕𝑏 𝜕𝑅⁄ )𝐸[𝐶𝐴])

𝜕𝑒
> 0, we can see that the 

reimbursement rule increases the marginal cost savings of preventive maintenance. 

Hence, a higher reimbursement rule generates effort (reduces the moral hazard 

problem). 

 

3.1.1 Estimating the effect of the incentive schemes 

We estimate the effect of the cost-reimbursement with the following model 

𝐹𝑖𝑡 =  𝛼𝑖  + 𝜷𝑿𝑖𝑡 + 𝜇𝑅𝑖𝑡 + 𝜀𝑖𝑡,     (7) 
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referred to as Model 1, where 𝑡 = 1, . . , 𝑇(𝑖) years. Our hypothesis is that a higher 

reimbursement rule will reduce the number of failures: 

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 1: 𝜇 < 0 

The effect of the cost reimbursement rule can be due to a selection effect and/or because it 

reduces the moral hazard problem. Hence, the estimation of Model 1 does not discriminate 

between these effects. 

 

3.2 Model 2 

The previous model focuses on the share of the cost per corrective maintenance activity that is 

borne by the contractor. However, there is also a performance incentive scheme in place 

(described in section 2.1). In particular, contractors may be penalised for the number of 

failures appearing each year and even more so for failures causing train delays. The profit for 

a contractor can then be formulated in the following way:  

𝜋𝑖𝑗 = 𝑊𝑖𝑗 − [𝑀𝑖𝑗(𝑋, 𝑒) + 𝑏𝑖𝑗 ∙ 𝐶𝐴𝑖𝑗(𝐹𝑇 + 𝐹𝑂) + 𝑃𝑇 ∙ 𝐹𝑇𝑖𝑗 + 𝑃𝑂 ∙ 𝐹𝑂𝑖𝑗 + 𝜑𝐹𝑂2],  (8) 

The term 𝑏𝑖𝑗 ∙ 𝐶𝐴𝑖𝑗(𝐹𝑇 + 𝐹𝑂) is the same as in equation (5), except that a distinction is now 

made between failures causing train delays  

𝐹𝑇𝑖𝑗 = 𝛼𝑖𝑗  + 𝛽𝐹𝑇𝑋𝑖 + 𝛾𝑗𝑀𝑖𝑗(𝑋, 𝑒𝑇) + 𝜀𝑖𝑗,     (9)  

and other failures 

𝐹𝑂𝑖𝑗 = 𝛼𝑖𝑗  +  𝛽𝐹𝑂𝑋𝑖 + 𝛾𝑗𝑀𝑖𝑗(𝑋, 𝑒𝑂) + 𝜀𝑖𝑗,     (10) 

In addition, 𝑃𝑇 and 𝑃𝑂 are the performance penalties incurred by the contractor for 𝐹𝑇𝑖𝑗 and 

𝐹𝑂𝑖𝑗 respectively. The tilted incentive scheme implies that 𝑃𝑇 > 𝑃𝑂, which will tilt the 

contractor’s maintenance strategy towards preventing failures causing train delays. For 

example, consider a situation where two defects are found that have the same expected 

corrective maintenance cost, but one defect is more likely to cause train delays than the other 

(which can be due to the type or the severity of the defect). The contractor will then benefit 
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more by first fixing the defect that is more likely to cause train delays, which increases the 

probability of the other defect to become a failure. However, the number of other failures 

must be handled in order to cap the risk of them causing train delays (for example, fixing 

failures require time slots on the tracks, and trains will eventually need to be rescheduled 

when the number of failures grows). We therefore consider other failures to have a second-

order effect (𝜑) on profit. 

We characterize the contractor’s maintenance strategy by the choice of efforts on 

preventing train delay failures and other failures, 𝑒 = (𝑒𝑇 , 𝑒𝑂), where one of the efforts 

crowds out the other.7 In other words, the contractor’s marginal cost of exerting 𝑒𝑇 increases 

with 𝑒𝑂.  

The contractor’s choice of effort will be tilted towards 𝑒𝑇 as a result of its marginal 

effect on the contractor’s expected cost of the project 𝐸[𝐶𝑗]:8 

𝜕𝐸[𝐶𝑗]

𝜕𝑒𝑇
= 𝑃𝑇 ∙

𝜕𝐹𝑇

𝜕𝑒𝑇
< 𝑃𝑂 ∙

𝜕𝐹𝑂

𝜕𝑒𝑂
+ 𝜑

𝜕𝐹𝑂2

𝜕𝑒𝑂
=

𝜕𝐸[𝐶𝑗]

𝜕𝑒𝑂
,   

𝑓𝑜𝑟  𝐹𝑂 ∈ [0, 𝑍],  (11) 

(note that 
𝜕𝐹

𝜕𝑒
< 0, and 

𝜕(𝐹𝑂𝑖𝑗)2

𝜕𝑒𝑂
< 0 ).9 Hence, a marginal increase in 𝑒𝑇 has a larger cost 

reducing effect (will be more profitable) than a corresponding increase in 𝑒𝑂. This 

relationship only holds until a certain threshold 𝑍 is breached, which means that not all effort 

will be allocated to the prevention of train delay failures. 

 

  

                                                           
7 Dewatripont et al. (2000) characterizes this two-task situation by a strictly positive cross-partial derivative of 

the disutility of effort  
𝜕

2
Ѱ(𝑒𝑇,𝑒𝑂)

𝜕𝑒𝑇𝜕𝑒𝑂
> 0. 

8
 𝐸[𝐶𝑗] = 𝑀𝑖𝑗(𝑋, 𝑒) + 𝑏𝑖𝑗 ∙ 𝐶𝐴𝑖𝑗(𝐹𝑇 + 𝐹𝑂) + 𝑃𝑇 ∙ 𝐹𝑇𝑖𝑗 + 𝑃𝑂 ∙ 𝐹𝑂𝑖𝑗 + 𝜑(𝐹𝑂)2 

9
 For simplicity, we assume that  

𝜕𝑀(𝑋,𝑒𝑇)

𝜕𝑒𝑇
=

𝜕𝑀(𝑋,𝑒𝑂)

𝜕𝑒𝑂
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3.2.1 Estimating the effect of tilted performance incentive schemes 

There is no point in time where performance incentive schemes were introduced. For 

example, there are examples of performance clauses in contracts awarded to the in-house 

production units prior to the introduction of competitive tendering. It is reasonable to assume 

that in-house production in general had some sort of incentive structure to reduce train delays. 

We can however use the sampling benefit from competitive tendering, which imply that it is 

more likely that the chosen contractor is efficient (see for example Armstrong and Sappington 

2007, chapter 4). This is also suggested by the results in Odolinski and Smith (2016), showing 

that competitive tendering reduced maintenance cost in Sweden with about 11 per cent (which 

of course also can be explained by other factors than just the sampling benefit).  

More specifically, we note that the effect of a maintenance strategy, where the choice of 

𝑒𝑇 and 𝑒𝑂 is tilted to the former, is increasing with the efficiency parameter 𝛾𝑗 (the number of 

failures decreases with efficiency; see equations 9 and 10). Hence, the introduction of 

competitive tendering can be used to test the effect of performance incentive schemes, given 

that tendering has resulted in more efficient contractors being awarded the maintenance 

projects. Our hypothesis is therefore that the use of competitive tendering will increase the 

effect of the tilted performance incentive schemes. We test our hypothesis by estimating two 

models. Model 2a is related to train delays 

𝐹𝑇𝑖𝑡 = 𝛼𝑖  + 𝜷𝑿𝑖𝑡 + 𝜗𝑇𝐷𝑖𝑡 + 𝜀𝑖𝑡     (12) 

𝐷𝑖𝑡 is a dummy variable indicating when a maintenance area is tendered in competition and is 

used as a proxy variable for a change in the effect of tilted performance incentive schemes. 

The other model is 

𝐹𝑂𝑖𝑡 = 𝛼𝑖  +  𝜷𝑿𝑖𝑡 + 𝜗𝑂𝐷𝑖𝑡 + 𝜀𝑖𝑡,     (13) 
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referred to as Model 2b, where failures not causing train delays is the dependent variable. 

According to (11), the parameters 𝜗𝑇 and 𝜗𝑂 should differ between Model 2a and 2b. Hence, 

we state the following hypothesis: 

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 2: 𝜗𝑇 < 𝜗𝑂 

 

3.2.2 Selection bias 

We need to consider a possible selection bias when estimating Model 2a and 2b. The 

maintenance of the Swedish railway network was gradually put out to tender, with the first 

contract tendered in 2002 and the last part of the network tendered in competition in 2014. 

The estimates from the tendering dummy variables in Model 2a and 2b will be biased if there 

are systematic differences between areas tendered first and tendered later that are not 

controlled by the independent variables; omitted variable bias will be present. A selection bias 

can also be present if we have reverse causality; if areas tendered first were tendered because 

they had high (low) probability of certain failures to occur. This issue – with respect to 

maintenance costs - is addressed in Odolinski and Smith (2016) who did not find such bias 

(see also Domberger et al. 1987 and Smith and Wheat 2012). We use the same approach in 

this paper and construct a vector of dummy variables: 

𝑧𝑖𝑘𝑡 = [𝐷𝑖𝑘, 𝐷𝑖𝑘𝑡, 𝐷𝑖𝑀, 𝐷𝑌; 𝝑],      (14) 

where 𝑘 = 𝐶 indicate when a segment is tendered in competition, 𝑘 = 𝐹 when tendered 

during 2002-2004 for the first time and 𝑘 = 𝐿 when tendered during 2005-2013 for the first 

time. The time period before tendered in competition is indicated by 𝑡 = 𝐵 and 𝑡 = 𝑂 when 

tendered in competition and onwards. The dummy variable 𝐷𝑖𝑀 is used for the year when the 

transition from not tendered to tendered takes place, i.e. the first year an area is tendered. 𝑧𝑖𝑘𝑡 

also includes year dummies (𝑘 = 𝑌 = 2004, … ,2013). 𝝑 are parameters to be estimated. 
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As a robustness test of Model 2a and Model 2b, we estimate 𝜗𝑖𝐹𝐵, 𝜗 𝑖𝐹𝑂 and 𝜗 𝑖𝐿𝑂 and 

test if 𝜗𝑖𝐹𝐵 = 0 which would imply that we have no systematic difference between areas 

tendered in 2002-2004 compared to areas tendered in 2005-2013 (before they were tendered) 

and areas not tendered during 2003-2013.10 

 We note that a general difference-in-differences approach would include a dummy 

variable indicating all areas tendered and a dummy variable for the period after tendering, as 

well as an interaction between these variables; see for example Greene (2012, p.155-157). We 

do not have a general post-tendering period as the exposure to competition was gradual. 

Hence, we use year dummy variables to control for general effects that occur over time which 

leaves the tendering variable to pick up the impact of tendering. Moreover, we also include a 

dummy variable indicating all areas tendered in competition sometime during 2003-2013 

along with the time-specific tendering variable, in line with the difference-in-differences 

approach. 

 

3.3 Regression model 

As previously mentioned, the performance measure used in this paper is the number of 

failures on the railway infrastructure, and is also the dependent variable in the models.  This 

variable consists of non-negative discrete values, i.e. it is a count variable. The distribution of 

the number of failures in Figure 2 shows that a large share of the observations has no failures.  

The number of failures is clearly not normally distributed. A Poisson regression can be 

used for this type of count data, where the number of events (𝑦𝑖) that is occurring during a 

certain time interval is assumed to be Poisson distributed, where 𝑖 =individual 1, 2 … 𝑁. The 

events can be explained by 𝑘 variables  𝑥𝑖𝑘. In a Poisson distribution, the conditional mean is 

                                                           
10 The definition of areas tendered first is arbitrary because the exposure to competition was gradual, and we 

therefore perform sensitivity tests with respect to this definition. 
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equal to its conditional variance (𝐸[𝑦𝑖│𝑥𝑖𝑘] = 𝑉𝐴𝑅[𝑦𝑖│𝑥𝑖𝑘]). However, the variance can 

be greater than the mean (overdispersion), violating the restriction in the Poisson model. 

Overdispersion can be present when a large fraction of the observations have a zero value, 

which is indicated by Figure 2 below.11 Indeed, the sample variance is many times larger than 

the sample mean for the dependent variables used in Model 1, 2a and 2b (see sample means 

and standard deviations in Table 1).   

 

 

Figure 2 – Proportions of observations: observed, Poisson- and negative binomial 

probability 

 

In this case, the negative binomial model is an alternative regression model in which the 

conditional mean is not equal to the conditional variance, which can be modelled 

                                                           
11 The overdispersion in Figure 2 is estimated from the pooled negative binomial model and is significantly 

different from zero according to a likelihood ratio test (𝑐ℎ𝑖2(1) = 3.8𝑒 + 05). 
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as 𝑉𝐴𝑅[𝑦𝑖│𝑥𝑖𝑘] = 𝜆𝑖 + 𝛿𝑖𝜆𝑖
2. This model is referred to as the NB2 model in the literature (see 

Cameron and Trivedi 2013), where 𝛿𝑖 is the dispersion parameter to be estimated.12  

With access to panel data, i.e. a cross-section of contracts observed over time, we have 

a good opportunity to control for individual heterogeneity. The conditional mean is 

𝐸[𝑦𝑖𝑡│𝑥𝑖𝑘𝑡, 𝛼𝑖] = 𝛼𝑖𝜆𝑖 = 𝛼𝑖exp (𝑥𝑖𝑘𝑡
′ 𝛽𝑘),     (15) 

where 𝛼𝑖 is the individual specific effect. If 𝛼𝑖 is independent of the regressors we would 

prefer a random effects model resulting in efficient and consistent estimates of 𝛽. If the 

regressors are correlated with 𝛼𝑖 we could use a fixed effects model, resulting in consistent 

estimates of  𝛽.13 However, Allison and Waterman (2002) found that the conditional fixed 

effects negative binomial model, proposed by Hausman et al. (1984), is not a true fixed 

effects model because the time-invariant variables do not drop out from the estimation. 

Hence, the fixed effects are not conditioned out in this model.14 An unconditional fixed 

effects negative binomial model can be used instead, which controls for the individual 

unobserved effects by including individual-specific dummy variables. A large panel (many 

individuals) can however result in biased parameter estimates due to the incidental parameters 

problem, first presented by Neyman and Scott (1948). This leaves us with the random effects 

negative binomial model. 

We will nevertheless have inconsistent estimates if the regressors are not independent 

of the individual effects 𝛼𝑖. A solution, first proposed by Mundlak (1978) for the linear model 

(see also Chamberlain (1982, 1984)), is to include averages over time of the variables. This 

                                                           
12

 The conditional variance in the NB1 model is  𝑉𝐴𝑅 [𝑦𝑖│𝑥𝑖𝑘] = 𝜆𝑖 + 𝛿𝑖𝜆𝑖 

13 In the fixed effects negative binomial model, the dispersion is constant (1 + 𝛿𝑖) for each individual, while the 

random effects model assumes that 1 (1 + 𝛿𝑖)⁄ ~𝐵𝑒𝑡𝑎(𝑟, 𝑠), which means that 𝛿𝑖 can vary randomly between 

individuals (see for example Hilbe 2011 for a specification of the negative binomial models with fixed and 

random effects). 
14

 Guimarães (2008) showed that the fixed effects are conditioned out only if the fixed effect equals the 

logarithm of the dispersion parameter, i.e. 𝛼𝑖 = ln (𝛿𝑖) 
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model produces ‘within’ estimates using the random effects estimator and is often referred to 

as the correlated random effects model. For the non-linear case (see for example Papke and 

Wooldridge 2008, Cameron and Trivedi 2013), the individual effect can be specified as 

𝛼𝑖 = exp (�̅�𝑖𝑘𝑡
′ 𝛾𝑘 + 𝜀𝑖𝑡),      (16) 

where �̅�𝑖𝑘
′ = 𝑇−1 ∑ 𝑥𝑖𝑘𝑡

𝑇
𝑡=1  for each 𝑘 = 1 … 𝐾. Using (16) we can then express (15) as 

exp (𝑥𝑖𝑘𝑡
′ 𝛽𝑘 + �̅�𝑖𝑘

′ 𝛾𝑘 + 𝜀𝑖𝑡),      (17) 

where we are controlling for the correlation between  𝛼𝑖 and our regressors 𝑥𝑖𝑘𝑡
′  via  �̅�𝑖𝑘

′ . 

Hence, we assume that the remaining individual effect in 𝛼𝑖 is independent of 𝑥𝑖𝑘𝑡
′ . 

Furthermore, (17) assumes that the relationship between 𝛼𝑖 and �̅�𝑖𝑘
′  is linear. We can also test 

interactions and quadratic terms between different �̅�𝑖𝑘
′  (Papke and Wooldrige 2008), where a 

failure to reject the null hypothesis of a parameter estimate equal to zero will lead us to drop 

the nonlinear term. Moreover, we can avoid collinearity between 𝑥𝑖𝑘𝑡
′  and �̅�𝑖𝑘

′  by using 

deviations from the mean 

exp [(𝑥𝑖𝑘𝑡
′ − �̅�𝑖𝑘

′ )𝛽𝑘 + �̅�𝑖𝑘
′ 𝛾𝑘 + 𝜀𝑖𝑡],    (18) 

where 𝑇−1 ∑ (𝑥′𝑖𝑘𝑡 − �̅�𝑖𝑘
′𝑇

𝑡=1 ) = 0 for each individual 𝑖 (see Allison 2009 and Bell and Jones 

2015). 

We estimate a negative binomial regression model on a panel data set stretching from 

2003-2013. The model we estimate is: 

Pr (𝐹𝑖𝑡 = 𝑓𝑖𝑡│𝑥𝑖𝑘𝑡, 𝑧𝑖𝑘𝑡, 𝛼𝑖 , 𝛿𝑖),     (19) 

where 𝐹 is the count of failures, 𝑖 = track segment 1,2, … , 𝑁 and 𝑡 = year 1,2 … , 𝑇(𝑖).  𝑥𝑖𝑘𝑡 

is a vector of 𝑘 explanatory variables, including infrastructure characteristics and traffic 

volume. A variable for different cost levels for compensation when rectifying a failure, i.e. the 

reimbursement rule, is included in Model 1.  

Track length is an important exposure variable in the model. We expect the coefficient 

for track length to not be significantly different from 1, meaning that a segment with track 
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length 2 km is twice as likely to have a failure as a segment with track length 1 km, ceteris 

paribus. If the track length coefficient was significantly above 1, the 2 km section would be 

more than twice as likely to have a failure compared to the 1 km section. This would reflect 

that track length captures other aspects than just exposure; for example if variations in 

infrastructure characteristics are not explained by other variables in the model estimation and 

are instead picked up by the track length variable. 

𝑧𝑖𝑘𝑡 is a vector of dummy variables, containing year dummies and a dummy variable 

for when a track segment belongs to a contract area tendered in competition, as well as a 

dummy variable indicating when there is a transition from not tendered to tendered in 

competition (which in most cases does not happen in the beginning of a calendar year). See 

section 3.2.2 and equation (14) for definitions of the dummy variables. The tendering dummy 

is also interacted with a time trend taking the value 1 during the first year of tendering, 2 

during the second year etc. The tendering dummies are included in Models 2a and 2b. Finally, 

𝛼𝑖 is the individual effect as specified in (16) and 𝛿𝑖 is the dispersion parameter in the model, 

where we assume that 1 (1 + 𝛿𝑖)⁄ ~𝐵𝑒𝑡𝑎(𝑟, 𝑠). 

 

4.0 Data 

The data set is an unbalanced panel over the period 2003-2013 and has been provided by the 

Swedish Transport Administration (which we hereafter refer to as the infrastructure manager, 

IM). The number of failures constitutes all failures reported to the IM that needed to be fixed 

immediately or within two weeks. The failure reports come from the train management 

system and may emanate from operators, train drivers, maintenance personnel as well as the 

public.  

There are many different causes of failures. Some are strictly exogenous with respect 

to maintenance such as animals or humans hit by a train, sabotage etc. These failures are out 
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of the contractors’ control and are not included, meaning that only failures occurring because 

of deterioration and/or poor maintenance of the infrastructure are analysed. 

The data set contains failures causing train delay as well as other “regular” failures. 

During 2003-2009 a train had to be delayed more than 5 minutes between two stations for a 

failure causing the delay to be reported as such. This definition was changed to 3 minutes in 

2010. To consistently analyse the number of train delay failures during 2003-2013 we only 

include failures causing more than a 5 minute delay. Failures causing less than 5 minutes 

delay are therefore defined as a regular failure in this study. Furthermore, we were not able to 

get consistent information about the knock-on effects of a first train being delayed, meaning 

that it is impossible to report the total number of delay minutes per failure from the available 

data.15 

The failures reported to the IM are linked to different parts of the infrastructure and its 

location on the railway network, that is, between the two stations the failure was located. Each 

of these segments is an individual (𝑖) in our estimations. Some of the segments have a very 

short track length (for example 10 metres) as they only constitute a switch or a bridge.  

Not all data is reported at the segment level. The traffic volume is available at the 

track section level, while the cost-reimbursement rule and the tendering dummies are 

available at the contract area level. The length relationship between a segment, section and 

area is shown in Figure 3. The number of segments per track section and the number of track 

sections per contract area varies; Figure 3 is only an illustration of the fact 

that  𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑘𝑚 <  𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑘𝑚 <  𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝑎𝑟𝑒𝑎 𝑘𝑚. 

 

                                                           
15 Moreover, in 2010-2013 we do not know if a total delay of 100 minutes (aggregated minutes of delay between 

several stations due to one infrastructure failure) contain any 3 minute delays between two stations or not. 
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Figure 3 – Track length relationship between segments, sections and contract areas 

 

Table 1 shows the descriptive statistics for failures and the other explanatory variables 

included in the estimations. In total we have 24 940 observations on segments administered 

by the IM over the period 2003-2013. However, only tendered contracts have a 

reimbursement rule. This information is available for a third of the observations. In the 

analysis of the reimbursement rule we exclude the design-bid-maintain contracts because 

these are, by definition, not performance based (which is the basis for our derived model) and 

are primarily used for the newly built railway lines. Moreover, we exclude yards when 

analysing train delay failures because these are exempted from the bonus/penalty system with 

respect to train delays in the maintenance contracts. 

 

Table 1 - Data 2003-2013 

Variable (24 940 obs.) Mean Std. Dev. Min Max 

SEG.: Failures, total 6.32 17.75 0 482 

SEG.: Failures, train delays 1.11 2.85 0 101 

SEG.: Failures, not train delays 5.22 15.47 0 413 

SEG.: Track length, metres 5 871 5 695 10 43 870 

SEG.: Rail weight, kg 51.58 5.68 27 63 

SEG.: Quality class, 0-5* 2.06 1.26 0 5 

SEC.: Traffic density, million gross tonnes** 8.29 8.62 0.00 49.79 

SEC.: Tendered, dummy 0.58 0.49 0 1 

SEC.: Transition to tend., dummy 0.08 0.27 0 1 

     

Subset of data used in Model 1 (8528 obs.)     

ARE.: Cost-reimbursement rule, thousand SEK 7.66 4.04 5 20 

SEG.: Failures, total 5.95 15.11 0 482 

SEG.: Failures, train delays 1.12 2.85 0 101 

SEG.: Failures, not train delays 4.83 12.91 0 381 

Track segment 

Contract area 

Track section 
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SEG.: Track length, metres 6 052 6 262 10 43 077 

SEG.: Rail weight, kg 51.73 5.82 32 60 

SEG.: Quality class, 0-5* 2.01 1.32 0 5 

SEC.: Traffic density, million gross tonnes** 7.89 9.32 0.00 49.79 

SEG = segment, SEC = section, ARE = area 

*A high value implies a low speed line with less strict requirement on track geometry standards 

compared to a high speed line (Banverket 1997) 

**Traffic density = (Million gross tonnes-km/Route km) 

 

The letters preceding each variable name denotes whether the information is available at the 

segment-, section-, or contract area level. As noted in Table 1, the information on traffic 

volume is available at the track section level. We make the assumption that each segment has 

the same traffic volume as the section it belongs to, which need not be the case in reality.  

To provide an indication of the relationship between failures and the cost-

reimbursement rule, we summarise the number of failures per million ton-km for each group 

of segments with the same cost-reimbursement rule. The correlation coefficient for these 

“cost-reimbursement groups” and failures per million ton-km is 0.50. Still, there are other 

factors than ton-km that can explain the number of failures. The rail weight is a proxy for the 

quality of the rail (and newer rails are generally heavier than the old). Moreover, the quality 

classification of the tracks determines the maximum speed allowed and the related track 

quality requirements with respect to track geometry. Other variables capturing the 

infrastructure’s characteristics, such as curvature and sleeper age, have been analysed but 

excluded from the estimations due to high collinearity between variables (for example 

between rail weight and sleeper age). 
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5.0 Results 

Three models are estimated. Model 1 considers the effect of different reimbursement rules on 

the number of failures, and Models 2a and 2b the effect of incentive schemes with weights put 

on train delays. 

�̂�(𝑥)𝑖𝑡 and �̂�(𝑥 + 1)𝑖𝑡 is estimated, which means that we estimate the expected value 

of failures when the explanatory variable 𝑥𝑖𝑡 increases with one unit. The estimated 

coefficient is then �̂� = ln [
�̂�(𝑥+1)𝑖𝑡

�̂�(𝑥)𝑖𝑡
], referred to as a semi-elasticity. 𝑒�̂� is an incidence ratio 

(IRR), expressed as  
�̂�(𝑥+1)𝑖𝑡

�̂�(𝑥)𝑖𝑡
. Hence, an IRR<1 indicates a negative effect. The incidence 

ratios are reported in Tables 2 and 3 together with standard errors for the estimated 

coefficients �̂�. All estimations are carried out with Stata 12 (StataCorp.2011). 

 

5.1 Econometric results: Model 1 

Table 2 shows the results from the estimations of the first model, which include results from 

both the random effects model and the preferred correlated random effects model. In the latter 

model, the coefficients for variables averaged over time are denoted ‘between estimates’ 

while the other coefficients are denoted ‘within estimates’ (referring to effects between and 

within segments, respectively). 

The ‘within estimate’ for rail weight is not significant in our preferred model, but has 

the expected sign (IRR=0.9987); the number of failures is expected to decrease when heavier 

rails are installed (note that there is a negative correlation between rail age and rail weight as 

old rails are lighter). However, the average rail weight per segment (RAIL_WEIGHTbar) 

picks up the ‘between effects’ and has a significant IRR at 0.9625. The difference in the 

parameter estimates for rail weight illustrates the difference between the random effects 

model and the correlated random effects model. The estimate in the random effects model 
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uses both the within and between effects, which results in a significant IRR at 0.9789, which 

is between the estimates for rail weight in the correlated random effects model. 

The IRR for quality class – which determines the maximum speed allowed and 

corresponding requirements on track standards – is not significant in the estimations. Track 

length (TRACK_L), which is the exposure variable, has the expected IRR of 1 and is 

significant. The estimations includes a squared term for million gross tonne density, and the 

estimates reflect a non-linear relationship with the number of failures, which is shown by both 

the within and between estimate in the correlated random effects model.  

Note that only the period 2004-2013 is included in this estimation due to missing data 

(reimbursement rule), which means that we include year dummy variables for 2005-2013. We 

tested the average values over time for the year dummy variables in the estimation because we 

have an unbalanced panel (Wooldridge 2013), but these were not jointly significant and 

dropped from the estimation. 

 Turning to the ‘within estimate’ for the contract design variable, REIMBR, we see that 

it has a negative effect on the number of failures (IRR=0.9610, p-value=0.000); we cannot 

reject 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 1. Hence, the estimation results suggest that an increase in the 

reimbursement rule gives an incentive to increase preventive maintenance (reduces moral 

hazard), which is a contract the efficient type is more likely to be awarded (selection effect).  

The incidence rate ratio at 0.9610 indicates that an increase in the reimbursement rule with 

one unit (in our case with 1000 SEK) will reduce the number of failures with 3.9 percent 

(100*(1-0.961)). The average number of failures per contract and year is 340 in the sample 

(5.95 per segment).16 Hence, the estimated effect of an increase in the reimbursement rule 

implies around 13 fewer failures per year for the average contract. We made sensitivity tests 

                                                           
16 The average track length in a contract area in the sample is about 340 km and the average segment length is 6 

km 
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using either train delay failures or other types of failures as the dependent variable, which did 

not have an effect on the estimate for the cost-reimbursement rule. 

 

Table 2 - Results Model 1 

 

Random effects Correlated Random effects 

 

IRR Std. Err. IRR Std. Err. 

Constant 5.4600*** 1.5638 13.6631*** 4.6980 

REIMBR 0.9987 0.0051 0.9610*** 0.0095 

RAIL_WEIGHT 0.9789*** 0.0049 0.9928 0.0079 

QUALAVE 1.0151 0.0225 0.9688 0.0401 

TRACK_L 1.0000*** 0.0000 1.0000** 0.0000 

MTGTDEN 1.1014*** 0.0077 1.0385*** 0.0123 

MTGTDEN2 0.9983*** 0.0002 0.9993** 0.0003 

D.2005 1.5680*** 0.1830 1.6390*** 0.1953 

D.2006 1.4461*** 0.1655 1.5513*** 0.1810 

D.2007 1.7700*** 0.2007 1.9625*** 0.2265 

D.2008 1.6242*** 0.1840 1.8119*** 0.2091 

D.2009 1.5133*** 0.1713 1.7102*** 0.1971 

D.2010 1.4245*** 0.1611 1.6221*** 0.1870 

D.2011 1.4504*** 0.1642 1.6294*** 0.1879 

D.2012 1.4578*** 0.1653 1.6462*** 0.1906 

D.2013 1.5515*** 0.1757 1.7608*** 0.2045 

REIMBRbar - - 1.0084 0.0059 

RAIL_WEIGHTbar - - 0.9625*** 0.0061 

QUALAVEbar - - 1.0289 0.0285 

TRACK_Lbar - - 1.0001*** 0.0000 

MTGTDENbar - - 1.1335*** 0.0100 

MTGTDEN2bar - - 0.9978*** 0.0002 

***, **, *: Significance at 1%, 5%, 10% level, respectively 

Log likelihood: Random effects model= -18 882.341, Correlated Random effects model= -18 841.726 

Number of observations = 8 528 

Number of segments=1 836 

Definition of variables in table 2: 

REIMBRa = reimbursement rule stating the cost of rectifying a failure that is included in the fixed 

payment (see section 2.0) 

RAIL_WEIGHTa = Rail weight, kg 

QUALAVEa = Average quality class; a high value of average quality class implies a low linespeed 



26 
 

TRACK_La = Track length, metres 

MTGTDENa = Million gross tonnage density (gross tonnes-km/track km) 

MTGTDEN2a = MTGTDEN^2 

D.2005-D.2013a = Year dummy variables, 2005-2013 

REIMBRbar = 𝑇−1 ∑ REIMBR𝑇
𝑡=1  

RAIL_WEIGHTbar = 𝑇−1 ∑ RAIL_WEIGHT𝑇
𝑡=1  

QUALAVEbar = 𝑇−1 ∑ QUALAVE𝑇
𝑡=1  

TRACK_Lbar = 𝑇−1 ∑ TRACK_L𝑇
𝑡=1  

MTGTDENbar = 𝑇−1 ∑ MTGTDEN𝑇
𝑡=1  

MTGTDEN2bar = 𝑇−1 ∑ MTGTDEN^2𝑇
𝑡=1  

a Deviations from the mean are used in the correlated random effects model 𝑥𝑖𝑘𝑡
′ − 𝑇−1 ∑ 𝑥𝑖𝑘𝑡

𝑇
𝑡=1  (see 

section 3.3) 

 

5.2 Econometric results: Model 2 

The estimation results from Models 2a and 2b using correlated random effects are presented 

in Table 3 (results from the random effects model are presented in the appendix). In Model 

2a, the number of failures causing train delays is used as the dependent variable. The 

dependent variable in Model 2b is failures not causing a train delay. 

 Rail weight has the expected effect on the number of failures; fewer failures with 

higher rail weight. The effect of track length and traffic is similar to the results in Model 1 

(however the ‘within estimate’ for track length is not significant). The ‘within estimate’ for 

quality class is significant in Model 2a, showing an increase in train delay failures for lower 

linespeeds (lower requirements on track standards), while the ‘between estimate’ show a 

significant decrease in train delay failures for lower linespeeds. These results suggest that the 

required maintenance is not sufficient with respect to the number of failures when there is a 

change in average quality class within a segment. However, when comparing different 

segments, lower linespeeds (low requirements on track standard) is associated with fewer 

train delay failures. 
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 There are differences in the effect of the competitive tendering between Model 2a and 

Model 2b according to the estimation results. In Model 2a, the IRR for competitive tendering, 

CTEND, is 0.9574 (p-value=0.172) with a 95 per cent confidence interval at [0.8996, 1.0190], 

which indicates a negative effect on the number of failures causing train delays, yet not 

statistically significant. The IRR for competitive tendering in Model 2b is 1.0729 (p-

value=0.000) with a 95 per cent confidence interval at [1.0351, 1.1121], which implies that 

the number of failures - that has not caused a train delay - is increasing when tendered in 

competition. The lower parameter estimate in Model 2a compared to 2b, and more 

importantly the non-overlapping 95 per cent confidence intervals, is in line with our 

hypothesis in section 3.2 (we cannot reject 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 2).17 An incentive scheme weighted 

against train delays will affect the contractor’s maintenance strategy.  

Note that we include a dummy variable indicating all segments tendered sometime 

during 2003-2013 (DTEND) to control for any general feature among these segments that also 

apply before tendering. The corresponding IRR is below one in both models, but not 

statistically significant (p-values at 0.746 and 0.669 in the respective models). Moreover, no 

selection bias was found using the dummy variable approach described in section 3.2.2. That 

is, the parameter estimate of interest 𝜗𝐼𝐹,𝑖𝐹𝐵 is not significantly different from zero (p-

value=0.883 and 0.183 in Model 2a and 2b respectively). 

The effect of competitive tendering over time was estimated using a trend variable. 

The parameter estimate was not significant in either of the model estimations and this variable 

is excluded in our preferred models. 

 

  

                                                           
17 In fact, estimating the 99 per cent confidence interval for the difference between the estimates we can 

conclude that these are significantly different even at the 1 per cent level (see Cohen et al. 2003, p.46-47).  
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Table 3 - Results Model 2a and 2b: Correlated Random Effects 

 

Model 2a - Train delay failures Model 2b - Other failures 

 

IRR Std. Err. IRR Std. Err. 

Constant 1.7860 0.9482 3.2110*** 1.1629 

MIXTEND 1.0117 0.0337 1.0467** 0.0197 

CTEND 0.9574 0.0305 1.0729*** 0.0196 

DTEND 0.8767 0.3559 0.9030 0.2152 

RAIL_WEIGHT 0.9644** 0.0054 0.9776*** 0.0032 

QUALAVE 1.0846** 0.0402 1.0110 0.0205 

TRACK_L 1.0000 0.0000 1.0000 0.0000 

MTGTDEN 1.0581*** 0.0120 1.0368*** 0.0071 

MTGTDEN2 0.9993*** 0.0002 0.9992*** 0.0001 

D.2004 0.9002*** 0.0354 0.9165*** 0.0195 

D.2005 0.9359* 0.0367 0.8499*** 0.0186 

D.2006 0.9406 0.0375 0.8292*** 0.0186 

D.2007 1.1342*** 0.0445 1.0402* 0.0227 

D.2008 1.0492 0.0441 0.9772 0.0227 

D.2009 0.9904 0.0436 0.9763 0.0235 

D.2010 1.2482*** 0.0552 0.9169*** 0.0232 

D.2011 1.3242*** 0.0604 0.8726*** 0.0230 

D.2012 1.2271*** 0.0577 0.7626*** 0.0210 

D.2013 1.3915*** 0.0651 0.7984*** 0.0220 

MIXTENDbar 2.1022 1.2261 2.2887* 0.9754 

CTENDbar 0.9799 0.1003 0.9980 0.0813 

DTENDbar 0.9702 0.1225 1.0440 0.1065 

RAIL_WEIGHTbar 0.9656*** 0.0058 0.9726*** 0.0046 

QUALAVEbar 0.9230*** 0.0213 1.0145 0.0192 

TRACK_Lbar 1.0000*** 0.0000 1.0000*** 0.0000 

MTGTDENbar 1.2122*** 0.0093 1.1214*** 0.0070 

MTGTDEN2bar 0.9962*** 0.0002 0.9976*** 0.0002 

***, **, *: Significance at 1%, 5%, 10% level, respectively 

Note: D.2004bar-D.2013bar are jointly significant and included in the estimations, but dropped from 

table 3 for expositional convenience 

Deviations from the mean are used in both models: 𝑥𝑖𝑘𝑡
′ − 𝑇−1 ∑ 𝑥𝑖𝑘𝑡

𝑇
𝑡=1  (see section 3.3) 

Log likelihood: Model 2a = -27 635, Model 2b = -51 402 

Number of observations in Model 2a and 2b: 24 940 

Number of segments Model 2a and 2b: 2 806 

Definition of variables in table 3: 
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MIXTEND = Dummy for years when mix between tendered and not tendered in competition, which is 

the year when tendering starts for a segment 

CTEND = Dummy indicating when a segment is tendered in competition 

DTEND = Dummy indicating all segments tendered in competition sometime during 2003-2013 

MIXTENDbar = 𝑇−1 ∑ MIXTEND𝑇
𝑡=1  

CTENDbar = 𝑇−1 ∑ CTEND𝑇
𝑡=1  

DTEND=𝑇−1 ∑ DCTEND𝑇
𝑡=1  

 

 

6.0 Discussion 

The design of contracts is vital for the outcome of the maintenance projects, which places 

high demands on the IM as a client. The presence of hidden information and hidden action 

can result in inefficient outcomes if not judiciously handled. Incentive contracts linear in costs 

can be used to alleviate the problems incurred by these information asymmetries.  Indeed, this 

type of contract is used by the IM in the tendering of maintenance contracts in Sweden, where 

different reimbursement rules have been used over the years of competitive tendering creating 

different incentive intensities.  The estimation results show that an increase in the 

reimbursement rules reduces the number of infrastructure failures. 

Does this result imply that we should have a high reimbursement rule in all 

maintenance contracts? Not necessarily. A high reimbursement rule indicates that we move 

closer to a fixed price contract which induces effort, but will make it easier for the efficient 

contractor to extract rent. Moreover, we will have a low level of competition if inefficient 

types do not take part in the bidding when reimbursement rules are too high, with the efficient 

type(s) being able to extract higher rents. 

 An important task of the contractors is to prevent infrastructure failures that are 

causing train delays. A robust and reliable railway infrastructure is an objective often stated 

by the IM. See for example the IM’s report on strategic challenges in 2012-2021 (Trafikverket 

2011). Undeniably, this objective is reflected in the design of the maintenance contracts, with 
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performance incentive schemes tilted against train delays. This makes it beneficial for the 

contractors to focus on this class of infrastructure failures. The estimation results confirm our 

hypothesis, suggesting that effort is tilted towards preventing failures causing train delays at 

the expense of preventing other failures. This is in line with the results from the multitask 

principal-agent model by Holmström and Milgrom (1991); increased incentives for one task 

can result in a reallocation of attention from other tasks. 

Are the performance incentive schemes beneficial with respect to the performance of the 

railway infrastructure? Unfortunately, we are not able to answer this question. For example, 

we do not have consistent information on total train delay minutes that each failure caused, 

which is an important overall measure of railway performance. A reduction in the number of 

train delay failures does not per se imply that the number of train delay minutes has 

decreased. Nevertheless, it is fair to say that a reduction in the number of train delay failures 

is a good sign of improved performance (note, however, that the estimate was not statistically 

significant). Still, the number of failures not causing a train delay has increased and possible 

consequences of this observation need to be further studied. For example, will this have an 

effect on the life cycle cost of the infrastructure? This is especially relevant considering the 

negative experience in Britain where misaligned incentive structures led to a deteriorating 

asset condition. 

 

7.0 Conclusion 

This paper offers evidence on the effect of different contract designs in rail maintenance 

services. It contributes to the existing literature by providing empirical evidence on the 

marginal effect of incentive intensity in the rail maintenance contracts, as well as the effect of 

tilted performance incentive schemes. More precisely, we have shown that a higher 

reimbursement rule increases the comparative advantage of the efficient contractor in the 
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bidding for contracts and that it induces effort, generating a higher level of preventive 

maintenance. The econometric results show that the reimbursement rule reduces the number 

of failures. However, we do not know if the effect is due to differences in efficiency among 

the contractors and/or differences in effort level. Still, the results show that the marginal effect 

of an increase in the incentive intensity in the contracts - corresponding to a 1000 SEK 

increase per failure in the cost-reimbursement rule - is a 3.9 per cent reduction of the number 

of failures. 

The econometric test of the tilted performance incentive schemes confirms our 

hypothesis that it has an effect on the relationship between the number of failures causing 

train delays and other failures. We can conclude that this contract design seems to have been 

beneficial with respect to the number of train delay failures, yet at the expense of other types 

of failures. 

Our findings are informative in considerations on the design of railway maintenance 

contracts, especially for other IMs across Europe that plan to use competitive tendering. 

Setting a reimbursement rule too low can be costly for the IM with respect to the number of 

failures that occur, while a high reimbursement rule can induce rent extraction. Moreover, 

when using tilted performance incentive schemes, the IM needs to contemplate the 

reallocation of attention from other tasks. For example, its effect on future maintenance costs 

needs to be considered.  

The results from this paper gives some support to the finding that the 11 per cent cost 

reduction in Sweden due to competitive tendering was not associated with a lower quality (see 

Odolinski and Smith 2016), as measured by the number of train delay failures. An important 

caveat is, however, that we do not know its effect on train delay minutes, or the long-term 

effects of an increasing number of other types of failures. Whether the reallocation between 

different efforts is cost efficient or not needs to be further investigated. In general, the effect 
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of different designs on cost efficiency in railway maintenance - considering both user and 

producer costs - is an area for future research. Such considerations are critical in the study of 

optimal contract design within this field. 
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Appendix 

Performance equation in maintenance contracts: 

𝐼 = 𝛽𝐷 (
1

2+
𝐷𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝐷𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

) + 𝛽𝐹 (
1

2+
𝐹𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝐹𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

) + 𝛽𝑄 (
1

2+
𝑄𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

𝑄𝑜𝑢𝑡𝑐𝑜𝑚𝑒

),   (21) 

where 𝐷 =train delay hours, 𝐹 =number of failures, 𝑄 =quality number related to track 

geometry, where a higher number imply a better track geometry quality (which is why the 

target value is in the numerator in relation to the outcome value). Their respective coefficients 

are 𝛽𝐷 = 1.8, 𝛽𝐹 = 1.0 and 𝛽𝑄 = 0.2. If 𝐼 = 1 the contractor has reached the target values, 

and will receive a bonus when 𝐼 > 1. 

 

Table 3 - Results Model 2a and 2b: Random Effects 

 
Model 2a - Train delay failures Model 2b - Other failures 

 
IRR Std. Err. IRR Std. Err. 

Constant 4.7074*** 1.0991 7.9314*** 1.2655 

MIXTEND 1.0199 0.0339 1.0400** 0.0197 

CTEND 0.9517 0.0290 1.0548*** 0.0188 

DTEND 1.0462 0.0866 1.1668** 0.0778 

RAIL_WEIGHT 0.9696*** 0.0039 0.9799*** 0.0026 

QUALAVE 0.9529*** 0.0179 1.0002 0.0133 

TRACK_M 1.0000*** 0.0000 1.0000*** 0.0000 

MTGTDEN 1.1611*** 0.0075 1.0861*** 0.0048 

MTGTDEN2 0.9974*** 0.0002 0.9983*** 0.0001 

D.2004 0.8991*** 0.0357 0.9169*** 0.0198 

D.2005 0.9321* 0.0368 0.8502*** 0.0189 

D.2006 0.9274* 0.0371 0.8274*** 0.0188 

D.2007 1.1170*** 0.0437 1.0347 0.0227 

D.2008 1.0243 0.0426 0.9690 0.0225 

D.2009 0.9706 0.0423 0.9708 0.0234 

D.2010 1.2162*** 0.0531 0.9111*** 0.0230 

D.2011 1.3121*** 0.0590 0.8781*** 0.0231 

D.2012 1.2371*** 0.0570 0.7724*** 0.0211 

D.2013 1.3830*** 0.0631 0.8024*** 0.0219 
***, **, *: Significance at 1%, 5%, 10% level, respectively 

Log likelihood: Model 2a = -27 728, Model 2b = -51 475 

Number of observations in Model 2a and 2b: 24 940 

Number of segments Model 2a and 2b: 2 806 


