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Abstract

Data sources using new technology such as the Geographical Posi-

tioning System are increasingly available. In many different applica-

tions, it is important to predict the average speed on all the links in

a network. The purpose of this study is to estimate the link speed in

a network using sparse GPS data set. Average speed is consistently

estimated using Indirect Inference approach. In the end, the Monte

Carlo evidence is provided to show that the results are consistent with

parameter estimates.

1 INTRODUCTION

Travel time is a critical aspect of all trips which is usually considered by

people in their route choice. It provides a key aspect in transportation plan-

ning and appraisal, and to be able to accurately measure travel time is of
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paramount importance. For instance, travel time is related to other key

factors such as congestion and pollution, and also has a significant impact

in social cost benefit analysis, both directly and indirectly. With increasing

availability of data using new technology such as the Geographical Posi-

tioning System, new methods and algorithms are being developed that are

tailor-made for the new data sources to address specific problems. For in-

stance, to provide route guidance in real-time to emergency services vehicles

to reduce the travel time, Westgate et al 2011 develops a Bayesian model of

the ambulance trips [14]. Miller et al. used GPS data containing speed and

location [11]; whereas Westgate et al. used data including speed, location

and timestamp as well [14]. Furthermore, several studies had recently been

done to estimate travel time or speed value for arterial road segments in a

network based on sparse GPS data (e.g. [7]; [8]).In this paper we deal with

data containing just location and timestamps.

Generally, GPS data in the literature is classified into low and high fre-

quencies. If traversed paths between all two consecutive GPS points can

be accurately detected, this data is defined as high frequency; otherwise it

would be low frequency. On the other hand, low frequency data are also

used for various reasons, including privacy issues, data collecting and stor-

age costs. When the data is collected with low frequency, the path traversed

between two consecutive GPS data points are not always known with cer-

tainty. Although most studies on travel time estimation have been done

on high frequency data (e.g., [16]; [15]), examples with low frequency data

include Jenelius et al. [8]. Another problem that should be acknowledged,

in particular with low frequency data, is the measurement errors associated

with GPS data. Chen et al. [3] report 27 meters as average positioning

errors in their dense case which was part of Hong Kong network.

To make the most use of low frequency GPS data sets with measurement
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errors, new methods and algorithms are being developed to address specific

objectives. The purpose of this study is to estimate the link speed in a

network using such a sparse data set. In our previous work [4] we developed

a method for estimating route choice models when data is spatially and

temporally sparse. This method was based on a consistent estimator pro-

posed by Karlstrm et al. [9] for estimating route choice models the complete

paths are observed (high frequency data). Following the indirect inference

approach [6] used in these previous studies we develop an estimator for link

speeds, and show how we can jointly estimate both parameters of the route

choice model, and link speeds.

The route choice model that this study is based on is link based with

random costs, and where the path cost is additive in link costs. Such a

model exhibits flexible correlation structure and thus a realistic substitution

pattern [5]. Also, it is useful from an application point of view since it is

easy to generate paths given the model and its parameters. The route choice

model describes how routes are chosen in the network, which is crucial to

understand when the paths are not known, using sparse GPS data. Given

a route choice model, we develop an estimator for link speeds. Finally we

show how the two estimators for (i) the parameters of the route choice model

and (ii) link speed both can be brought together into an algorithm where

both are estimated iteratively.

The paper is organized as follows. First, we state the proposed model

that is used for estimating the average speed on the network links. Then

we specify our indirect inference-based estimator. At the end, the iterative

process of estimation will be explained in which we will estimate the average

speed on the network links.
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2 The Model

In this section we will introduce the data generating process that is believed

to generate sets of sparse GPS data with some measurement error. Our main

objective is from such a data set to infer link speeds. In our study, the travel

data set consists of travel records of vehicles locations and the associated

time stamps. Each observation is associated with a trip that is represented

with a set of GPS points, each of which having latitude, longitude, and

time stamp. Assuming that the origin and destination of the path is known

and located on nodes on the road network, we obtain partial observation of

the path in between. Firstly, we do not know the path taken between the

origin and destination, and, secondly, the GPS points are generated with a

measurement error.

We propose a model with a probabilistic route choice component, and

a GPS point simulator conditional on the route. For such model, there are

different types of parameters to be specified such as behavioural parameters,

sampling frequency, GPS data measurement error and average speeds on all

the network links. In this paper we are primarily interested in estimating the

average speeds, it is assumed that the sampling frequency and measurements

error are known and the average link speeds are going to be consistently

estimated by having the observations, i.e. a travel data set in sparse GPS

format. Behavioral parameters will also be estimated, though they are not

the main concern in this paper. There are two related and yet unobserved

components associated with each trip. The first is the traversed path and

the second is speed values on the links. Our model that generates sparse

travel data consists of two parts. The first part is a route choice model with

the parameter β. This model introduces the path traversed by travelers.

The second part of the model is a simulator that generates GPS points from

a given path with some known measurement error, data sampling frequency
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F , and average speeds on all the links of the network.

We consider individuals making route choices on a road network given

their origin and destination. The network N in our model consists of sets of

nodes (v) and links (l). A path connecting node vo to node vd is shown with a

sequence of links making the path. Therefore, the indexes of these links could

be used to introduce the path π = {l1, · · · , ln}. Each link has its own strictly

positive cost function c(xl, εl,i;β) depending on the vector of its specific

characteristics xl. Vector β is the coefficient of the link characteristics and

εl,i is the random link cost for individual i on link (l). The cost function in

this paper is chosen as linear (Eq. 1).

c(xl, εl,i;β) = βxl + εl,i, (1)

Based on path definition, the cost of each path is equal to summation

of costs for its consisting links. Therefore, the cost for individual i to pass a

path is calculated by

Ci(π) =
∑
l∈π

c(xl, εl,i;β). (2)

In addition, the travellers want to maximize their utilities based on their

known idiosyncratic random utility εl,i and the link characteristics regarding

their passed links; therefore, they will take the path with the minimum

generalized cost in this model

πi = arg min
π∈Ω(voi ,v

d
i )
Ci(π). (3)

where Ω(voi , v
d
i ) denotes all possible paths connecting voi (origin) and vdi (des-

tination). In our case, the random part εl,i is assumed to follow a truncated

normal distribution using only the positive values, in order to avoid negative
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link costs. This assumption leads to having always a positive link cost on

the network; thus causing to satisfy the prerequisites of the Dijkstra shortest

path algorithm. Therefore, in order to simulate path choices in accordance

with (3), we apply the Dijkstra algorithm. The output is a path consisting

of a set of links which is illustrated in Figure 1 -A.

Figure 1: (A) A path between an origin and destination is simulated by

means of the route choice model. (B) Conditional on the route, a car

traversing this route is simulated according to average link speeds, provid-

ing positions and time stamps. (C) The final relocation based on the GPS

measurement error.

To generate a set of GPS points from a path, a virtual car is sent through
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the path and driven with the average speed on the corresponding links.

The location of the car is determined and recorded every 1/F seconds and

denoted as Gi = {gi,1, · · · , gi,Mi} for individual i, where Mi denotes the

number of GPS points for the observation i. These points are shown in

Figure 1 -B with stars.

As mentioned before, GPS data is noisy, thus causing the aberration

between the measured location and the true location on the map. We assume

that all the GPS data collectors have a known error distribution with zero

mean modelled as a two-dimensional symmetric Gaussian, in latitude and

longitude. According to this assumption, the GPS points are re-located by

adding a measurement error, drawn from the symmetric normal distribution

with a given standard deviation. Finally we generate a series of GPS data

points passed in a trip through path π as Ĝi = {ĝi,1, · · · , ĝi,Mi}; where ĝi,1

is the first GPS point and ĝi,Mi is the last one for the individual i (Figure 1

-C).

3 Method

Due to the large number of links in a typical network (in our case, 7459

links) and a relatively low number of observations by GPS, it is practically

impossible to estimate the average speed on all these links due to the limi-

tations of the data set. Thus, we categorize the links into J different classes,

in our case according to their speed limits, and only J parameters need to

be estimated, as explained in more details later on. Also, the sparsity of

GPS data implies that the traversed path by the traveler is not known with

certainty. The idea here is to use a route choice model (our previous work,

[4]), and generate a path according to the source and destination and the

behaviour of the traveler on the network (See Figure 1).

Although we have a model which generates GPS data sets, there is no
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straight forward way of setting up a likelihood function to be maximized in

order to estimate average speed values. In large, this difficulty arises due to

the unobserved route choice which generated the GPS points. As a remedy,

we propose the use of an Indirect Inference approach for estimation, which

is a simulation-based estimation technique [6].

In this section we will develop an indirect inference method for estimating

the values of average speed on all the road segments in the network based

on the observed travel data set in sparse GPS format. Indirect inference

is a simulation-based method to estimate econometric models. Thus, as an

initial requirement, the model of interest should be able to simulate data

for a variety of parameter values. The main characteristic of the indirect

inference method is the use of an approximate or auxiliary model in order

to form a criterion function. The number of parameters for the auxiliary

model has to be more or at least equal to the number of parameters in the

main model. There are two requirements for choosing an auxiliary model.

First, it should be easy to estimate, since we want to get help from an

auxiliary model to estimate its parameters (the auxiliary parameters) and

run the auxiliary model repeatedly. Second, the auxiliary model has to be

flexible enough to capture the variation of the observed data. The aim of

the indirect inference is to find the parameters for the main model such that

the simulated and observed data look the same from the auxiliary models

point of view.

The indirect inference approach aims to estimate a model of interest,

which is advantageous in practice, but it is difficult to estimate. In our case

the true model is described in Section 2. This model is able to simulate a

data set with given values for route choice parameter β, and average speeds

on the links and given values for sampling data frequency and GPS data

measurement error. To simulate a series of GPS points for a trip between a
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given origin and destination pair, we need to run the route choice model to

simulate traversed path based on its characteristics and β; then, we take the

data sampling frequency and speed values and implement the GPS point

simulator in the model for the traversed path. In addition, an auxiliary

model is required, this model may thus be misspecified but easy to estimate

and powerful enough to capture relevant variation in the data.

In our auxiliary model, for a series of GPS data points passed in a trip

by individual i denoted by Ĝi = {ĝi,1, · · · , ĝi,Mi}, there are a series of time

stamps {ti,1, · · · , ti,Mi} where ti,m denotes the time that the traveler passed

the GPS point ĝi,m. First, through the auxiliary model, we may find the

most likely path which was traversed by the traveler while passing the GPS

points Ĝi. In the literature, there are several methods for mapping GPS

data to digital networks and estimating the traversed path. These methods

are generally named as map-matching techniques. In our case, we apply our

own personalized map-matching method that will be explained later on in

this section. We here assume to detect the actually traversed path π with

the help of our map-matching method. It is notable that our map-matching

method may be misspecified. However, as it is a part of the auxiliary model,

misspecification and mismatched paths will not compromise the consistency

of our final estimates, this is a strength of the indirect inference approach.

Then, we define the closest point on the matched path (output of map-

matching method) to the GPS point ĝi,m as its inferred matched location

ǵi,m. Ǵi = {ǵi,1, · · · , ǵi,Mi} denotes the set of inferred matched points on the

path π regarding GPS points Ĝi. Since we assume the origin and destination

of the trips to be known, we map the first and last GPS points to them.

Then we again send our virtual car through the path and let it drive based

on the auxiliary parameters as the values for average speeds. The car will

pass point ǵi,m at a specific time t́i,m. Since we want to estimate the values of



10

average speeds on the links (S(l)), parameter Z(l) is defined as our auxiliary

speed parameter for the link l in the network in which Z(l) is related to its

speed S(l). The parameters of the auxiliary model will be estimated to

minimize the summation of squared differences between ti,m and t́i,m.

Figure 2: Provided GPS points and a matched path, the closest location on

the path is determined.

As mentioned estimating the average speed is costly for all the existing

links in a network, and could be practically impossible given a limited data

set. Therefore, in this study we categorize all the links in the given network

into J classes based on the speed limits and lengths associated to each link.

In such conditions, the average speed for link l is equal to Sj if link l be-

longs to class j. This classification decreases the number of parameters, the

average speed on all the network links, to only J ones. Furthermore, the

number of unknown parameters in the auxiliary model should be equal to

or more than the number of parameters in the main model [13]; therefore,

the vector of Z = {Zj}Jj=1 is defined for the same number of elements as

S = {Sj}Jj=1 has.

In theory, there is a correspondence between the parameters of the true

model and the auxiliary parameters which is revealed through a smooth

binding function Z(S). This function should be explored by simulations.

Since the average speeds are the only parameters of interest for us, we ini-

tially fix the value β and draw a set of random structural speed parameters
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{Sjk}
J
j=1, k = 1, · · · ,K from specified domains of interest Dj . Then K

different GPS data sets will be simulated using our true model. These sim-

ulated GPS data sets are converted into matched paths by applying our

map-matching method. The set of matched paths are denoted by ỹ(Sk),

where Sk = {S1
k , · · · , SJk } is the vector of speed values. Then we estimate

the vector of auxiliary parameters corresponding to each specific data set

simulated by the same parameters Z̃k(Sk).

A smooth binding function is estimated by local OLS, based on K differ-

ent given values of Sk and their corresponding Z̃k(Sk). This smooth binding

function is denoted by Z̃(S).

The purpose of the indirect inference method is to select the parameters

of the true model such that the simulated and observed data look the same

from the auxiliary models perspective. For estimating speeds, a least square

loss function is used, measuring the distance between observed time stamps

(ti,m) and corresponding traversed time (t́i,m) for inferred matched points,

based on the auxiliary model. Thus, given observed series of GPS i =

1, · · · , I, where each series consists of a set of Mi GPS points, we estimate

The purpose of the indirect inference method is to select the parameters

of the true model such that the simulated and observed data look the same

from the auxiliary models perspective. The likelihood function is used for all

the link classes based on the auxiliary model, observed GPS data matched

to paths (y), and the network characteristics

Ŝ = argmin
S

∑
i

∑
m∈Mi

(ti,m − t́i,m(Z̃(S)))2. (4)

One of the main characteristics to consider in the route choice model

is travel time. Typically we want to determine the effect of travel time on

route choice, by estimating the corresponding route choice parameter. As

link travel times have to be inferred from link lengths and estimated link
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speeds, a correlation is introduced between the estimates of the route choice

parameter (β) and the link speeds S(l). Therefore, we propose a method to

simultaneously estimate these two correlated parameters. In other words,

a robust estimate for β could lead to accurately estimate the speed. Thus,

we present an iterative method consisting of two sub-estimators. The first

sub-estimator takes a given value for β and estimates the speed values and

the second one estimates β given the speeds for the links in the network.

The second sub-estimator for β is described in detail in Fadaei Oshyani

et al. [4]. In other words, we assign an initial value to β and estimate

speed values in the first sub-estimator. Then we take these estimated speed

values and apply the estimator in the second sub-estimator to re-estimate

the route choice parameter (β) and use the new value for β to run the first

sub-estimator again. This process will continue until we reach the final

estimate values for speeds. Both sub-estimators are constructed based on

the indirect inference approach.

In the proposed model there are two unknown values in the cost func-

tion, the route choice coefficient β and the value of speed S(l). Therefore,

we propose a method to simultaneously estimate these two correlated pa-

rameters. In other words, a robust estimate for β could lead to accurately

estimate the speed. Thus, we presente an iterative method consisting of

two sub-estimators. The first sub-estimator takes a given value for β and

estimates the speed values and the second one estimates β given the speeds

for the links in the network. In other words, we assign an initial value to

β and estimate speed values in the first sub-estimator. Then we take these

estimated speed values and apply the estimator in the second sub-estimator

to re-estimate the route choice parameter (β) and use the new value for β to

run the first sub-estimator again. This process will continue until we reach

the final estimate values for speeds. Both sub-estimators are constructed
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based on the indirect inference approach.(see figure)

3.1 Map matching

The locations reported by the GPS do not accurately match to the network

of digital maps; thus, we need to apply some methods to map the reported

points onto the network. In addition, our map-matching method should

detect the most likely traversed path for each series of travel points. For this

purpose, there are several map-matching methods, in the literature. Quddus

et al. [12] analyzed 35 map-matching methods that had been presented

during 1989- 2006. Lou et al. [10] mentioned that most of the existing map-

matching methods work with a high sampling rate from 6 to 2 points per

minute, and do not operate well for low-rate sampled points.

Our own map-matching technique works in the following way. As men-

tioned the origin and destination of the trips are assumed to be known.

Thus, in the first part, many of the possible path choices connecting the

given origin and destination pairs are identified. Then, the summation of

distances between each possible path and the set of GPS points associated

with the given trip is calculated. Finally, the path with the minimum dis-

tance is introduced as the matched path.

Although the method presented in the first part works well for the GPS

data with high frequency and low measurement errors, there is a difficulty for

its application in our case with sparse data. Due to sparseness in our dataset,

in practice, the first part of our map matching method usually returns more

than one choice as the matched path. In other words, there are usually a

number of sub-paths connecting two consecutive points resulting in having

different paths with the same total distance to the set of GPS points. (Fig.

3)

In order to deal with this problem, we introduce the third step in which



14

Figure 3: Provided sparse GPS data, alternative routes may be consistent

with reported locations of GPS points. By also using the time stamps we

detect a probable route.

the aim is to find the best matched path from these different output paths

from the second step. A solution to deal with this problem is to find the

actual locations of the GPS points on a path based on the point time stamps

and speeds on the links; then, calculating the distances between these loca-

tions and their reported positions in the dataset. The choice with minimum

distance is detected as a final matched path. The actual location for a GPS

point on a given path is defined as the location on the path that the traveler

would be there if heshe took that path.

Assume gi,m represents the actual position of the GPS point ĝi,m on a

given path. To find the actual locations of the GPS points for the given path,

we send a virtual car through the path and let it drive based on assigned

speeds to the links belonging to the path. After traveling for ti,m as the

timestamp associated with ĝi,m, the actual location of the GPS point will

be detected as gi,m. Since the information regarding the links speed values

is still unknown, we substitute the link speeds in our data set with the
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speed limits as the average speed values on the links. Although speed limit

is not an accurate estimate for the average speed, it could be practically

helpful in the indirect inference approach. In other word, since we apply our

map-matching method for both real and simulated data in the same way,

the error introduced in map-matching will be corrected for by the indirect

inference based estimator.

4 Case study

We used the transportation network in Borlänge city, Sweden, representing a

directed graph containing 3077 nodes and 7459 links [5]. All the links in the

network were divided into four speed-classes (S1, , S4) based on their speed

limits and lengths. As the assigned speed limits to the links for the Borlnge

network vary from 5kph to 100kph, the speed-classes must be formed to

cover all the links in the network. Furthermore, we assumed that the speed

on a link is fixed and equal to the average speed. For this case study, link

travel time was considered as the parameter of interest in the route choice

model. The link travel times are not given by data, but have to be inferred

from reported link lengths L(l) and the estimated link speeds S(l), thus we

estimate the route choice model based on the link travel time characteristic

(xl = L(l)/S(l)).

To verify the accuracy of our proposed method, we first simulate a

dataset based on our route choice model and then estimate parameters of

interest using the proposed method in section 3. Given the network and

the route choice model, a value is assigned to β (say β = 2) and four val-

ues to average speeds for link-classes (say S1 = 20kph, S2 = 32kph, S3 =

55kph, S4 = 70kph ); then, datasets are simulated. We simulated data for

N = 3000 trips. For each trip, while traveling along the path, the location

of the virtual car was stored every 60 seconds, considering known GPS mea-
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surement error. Finally, our indirect inference-based estimator was applied.

In this paper, since the true speed values are known, we choose an appro-

priate interval for generating the binding function, it is D1 = (10; 30), D2 =

(30; 40), D3 = (40; 60), D4 = (60; 80). The indirect inference based estima-

tion were done with a binding functions which themself are estimated using

10 sample points drawn from Dj for speed classes. For each such sample

point the auxiliary parameters are estimated based on N = 3000 simulated

paths. GPS related spatial error is introduced following a normal distribu-

tion N(0;σ). We examined whether the estimated parameters are consistent

with the assigned values to the model for simulating datasets.

4.1 Results

All Monte Carlo statistics are calculated based on 10 independent estima-

tions of the parameters. That is, we create ten independent sets of ”ob-

served” GPS data and then we apply our iterative II-based estimator once

to each of these data sets. In Table 1 we report the Monte Carlo evidence of

the average speed estimates for three GPS sampling interval. According to

the reported results, estimated values for all the link classes are quite precise

in the second iteration. For each of the estimates, the true data generating

speed parameters falls within the 95% confidence interval of the estimated

parameters. Thus the true values of speeds cannot be rejected.

Although the main purpose of the method is to estimate average speed

values, our iterative estimator yet returned an accurate estimate for the

route choice parameter. Table 2 shows the Monte Carlo evidence of β for the

three GPS sampling interval. The estimate for the route choice parameter

is precise for all data sampling values.
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Table 1: MONTE CARLO EVIDENCE: ESTIMATES OF AVERAGE

SPEED VALUES FOR DIFFERENT GPS SAMPLING TIMES, AND

TWO ITERATIONS.

GPS sampling time (sec) S1 S2 S3 S4

Mean Std. Mean Std. Mean Std. Mean Std.

60 First iteration 18.11 0.99 29.76 1.53 55.88 0.77 67.86 0.25

Second iteration 19.65 0.38 32.34 0.89 55.69 0.54 69.81 0.42

90 First iteration 18.10 0.67 30.43 1.01 55.36 0.53 67.58 0.29

Second iteration 19.75 0.47 32.45 1.09 55.23 0.60 69.63 0.40

120 First iteration 20.12 2.24 25.86 5.14 55.92 2.30 67.43 0.35

Second iteration 22.08 0.75 29.06 0.99 55.47 1.40 69.35 0.32

Table 2: MONTE CARLO EVIDENCE: ESTIMATES OF β FOR DIF-

FERENT GPS SAMPLING TIMES, AND TWO ITERATIONS

GPS sampling time (sec) β

Mean Std.

60 First iteration 1.946 0.037

Second iteration 2.069 0.029

90 First iteration 2.021 0.043

Second iteration 2.019 0.026

120 First iteration 1.972 0.076

Second iteration 2.042 0.068

5 Conclusion

In this paper we have proposed a method to estimate the average speed

values on all the links in a network using GPS data sampled with a low

frequency. Travel time is calculable based on the estimated speeds for all
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the given trips. As mentioned travel time is a critical aspect of all trips

which is usually considered by people in their route choice. In addition, it

provides a key aspect in transportation planning and appraisal, and to be

able to accurately measure travel time is of paramount importance. When

the travel data is collected with low frequency, it is unknown which path

has been traversed between the GPS data points. Moreover, GPS data

has measurements error. These characteristics may introduce bias into the

estimates governing route choice behavior.

We have designed an iterative method for the two estimators for the

parameters of the route choice model and link speed both which have been

brought together into an algorithm. First, the links are classified based on

their speed limits into a number of classes. Then, the average speed of

each class is consistently estimated. We have applied a route choice model

which is link based with random costs, and where the path cost is additive

in link costs. The route choice model describes how routes are chosen in

the network, which is crucial to understand when the paths are not known,

using sparse GPS data.

The main conclusion is that indirect inference is a useful option for es-

timating speed values on all the links in a network. Our indirect inference

based method can be used for estimating speeds using low frequency GPS

sampling data with measurement errors. The Monte Carlo evidence shows

that, applying the indirect inference approach to speed estimation is a worth-

while solution.
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