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Abstract 
 

Rank dependent utility maximization is applied in maximizing a linear and a 

quadratic scheduling model considering a subjective weighting over uncertain 

outcomes. The optimal departure time and maximal utility are different from 

that under expect utility maximization in the transformed travel time density 

function. Probability weighting is found when estimating the linear model and 

the estimated weighting function suggests optimism behaviour of respondents.  

The results also reveal the evidence of heterogeneity in scheduling preferences. 

Moreover, evidence for the variable of excessive travel time beyond the 

traditional scheduling model specification is found even with controlling for 

probability weighting. Our results also show no empirical equivalence between 

the scheduling model and its derived forms. 
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1 Introduction

The dispersion in travel time, usually notated as travel time variability (TTV), has been ac-
knowledged as an indispensable part of travel cost. Transport economics research has been
interested in the assessment of value of travel time variability (VTTV) and its integration into
traffic assignment and Cost Benefit Analysis (Eliasson (2006); Eliasson (2009); Fosgerau et al.
(2008)). One way of evaluating VTTV is to assume that individuals value characteristics of
the travel time distribution per se. For example, individuals trade-off between mean travel
time and travel time variance in mean-variance model. Peer et al. (2012) used the stadard
deviation as the alternative measures of the variability and Lam and Small (2001) used the
difference between the 90th percentile and the median. Another approach is to use scheduling
models, assuming that individuals adjust their departure times with respect to random travel
times (Gaver (1968)). Scheduling utility specifications have various forms and there are two
frequently applied scheduling models: one has a linear function of travel time (Vickrey (1969);
Small (1982)) and the other has a quadratic form (Vickrey (1973)). Noland and Small (1995)
extended the linear scheduling model in the context of stochastic travel time, and Bates et al.
(2001) deduced a more general conclusion that VTTV can be inferred from the scheduling pref-
erences estimated in a scheduling model. Recently a simplified form of the linear scheduling
model is studied by Fosgerau and Karlström (2010); and the quadratic scheduling model is
studied by Fosgerau and Engelson (2011). Both provided a theoretical basis that the derived
forms of scheduling models can be reconciled with the traditional mean-variance models i. The
scheduling approach is considered to be more behaviorally consistent in evaluating VTTV.

The scheduling models were derived, however, under the assumption that individuals are
maximizing Expected Utility (EU). Such an EU hypothesis (Bernoulli David (1954); von Neu-
mann and Morgenstern (1947)) is convenient but not always ”true”. Allais (1953) already
displayed many cases where the axioms of EU are violated by actual human behavior. In the
face of TTV, Individuals could have different risk attitudes (risk aversion, risk taking, risk
neutrality) and subjective probability weighting. In EU, risk attitudes depend completely on
the curvature of value function which can be transformed into constant absolute risk aversion
(CARA) (Pratt (1964) and Arrow (1965)) or constant relative risk aversion (CRRA). Risk
attitudes were found in many TTV studies. Senna (1994) proposed a non-linear value function
in which the risk attitude parameter is fixed. Polak et al. (2008) applied CARA to the linear
scheduling model (Small (1982)) and found mildly risk aversion among their sample. Signifi-
cant risk taking was found by Li et al. (2012) when applying CRRA to the same scheduling
model.

Meanwhile, there are also other alternatives which relax the independence axiom of EU,
such as Prospect Theory (PT) (Kahneman and Tversky (1979)) and Rank Dependent Utility

iThe theoretical equivalence is proved in Fosgerau and Karlström (2010) and Fosgerau and Engelson
(2011).The derived form of scheduling model is equivalent to the mean-variance approach
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(RDU) (Quiggin (1982); Wakker (2010); Diecidue and Wakker (2001)). RDU has some fa-
vorable properties over PT for transforming the cumulative probability of ranked outcomes.
Tversky and Kahneman (1992) advanced their PT by incorporating the cumulative probabil-
ity weighting, and develop Cumulative Prospect Theory (CPT). These promising alternatives
accommodate anomalies of travel behavior under risks (Avineri and Prashker (2004)).

For the purpose of evaluating VTTV, these extended theories are often applied to the
mean-variance approach. Hjorth (2011) applied the CPT in estimating the mean-variance
model and found that the economic significance of probability weighting was however ascertain
since the shape of weighting function varied considerably when applying different function
forms (Tversky and Kahneman (1992); Prelec (1998)). Similarly, different shapes of weighting
functions were also identified by Hensher et al. (2011), where risk attitude, probability weighting
and heterogeneity were considered in estimating the mean-variance model.

Little research has been made in applying sophisticated frameworks, such as PT, RDU, and
CPT, in the context of scheduling model, particularly the quadratic one. It is considered that
scheduling approach is better alternative than the mean-variance model in VTTV evaluation.
It is of interest to investigate how the departure time choice and its maximal scheduling utility
change under RDU maximization. Koster and Verhoef (2010) provided an analytical framework
for deriving the linear scheduling model under RDU maximization. They performed a sensi-
tivity analysis on the optimal departure time considering the probability weighting function of
Prelec (1998). There is no analytical framework developed for the quadratic model, and a more
flexible probability weighting function is on demand Rieger and Wang (2006). In addition, the
two scheduling models were extended by allowing for discrete penalties for excessive travel time
(Wang et al. (2012)). Such an idea of evaluating the shape of travel time distribution for VTTV
is consistent with the argument in van Lint et al. (2008), for the reason that the travel time
distribution is often skewed. Therefore, this paper is motivated in deriving the extended forms
of linear and quadratic scheduling models accounting the flexible weighting function of Rieger
and Wang (2006) in a RDU framework.

In the following sections, we firstly show how to derive the linear and the quadratic models
using RDU maximization; and how the optimal departure times and optimal scheduling utilities
are affected by the probability weighting function of Rieger and Wang (2006). The derived
scheduling models are estimated on a Stated Preference data set, which was designed for
measuring VTTV. Scheduling parameter estimates from multinomial logit (MNL) estimation
and mixed multinomial logit (MXL) are reported. In particular, the parameters indicating the
probability weighting function and the random parameters for heterogeneity are presented. An
estimation technique, applied in estimating the derived liner scheduling model, is also discussed.
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2 Theoretical Model

2.1 Rank dependent utility maximizing

RDU assumes that the value of an outcome depends on both the probability of such an outcome
and the ranking of this outcome in comparison to other outcomes in the same lottery set.
Following a new version of RDU derived by Diecidue and Wakker (2001), all possible outcomes
are ordered from best to worst, i.e., x1 > ...xn with corresponding probability p1 > ...pn. The
ranked dependent utility of such a ranked lottery (p1, x1; ...; pn, xn) is given by

RDU(p1, x1; ...; pn, xn) =
∑

i

πi ∗ U(xi), (1)

where, for each i

πi = w(p1 + ...+ pi)− w(p1 + ...+ pi−1) (2)

π1 = w(p1)

Graphically, Diecidue and Wakker (2001) showed the probabilities are transformed by the
decision weight π in Fig.1.

Figure 1: Graph of distribution function of lottery( p1, x1; ...; pn, xn) source: Diecidue and
Wakker (2001)
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RDU is determined by the utility and the corresponding decision weight . A probability
weighting function w transforms the probability into non-linear. As discussed in the introduc-
tion, there are some alternative parametric functions of w, such as Tversky and Kahneman
(1992) and Prelec (1998). Each of those classic weighting functions has its own limitation,
and Rieger and Wang (2006) suggested a new type of weighting function which avoids infinite
values for the subjective utility.

w(F ) =
3− 3b

a2 − a+ 1
[F 3 − (a+ 1)F 2 + aF ] + F, (3)

w in Eq. 3 transforms probability F with two parameters a ∈ 0, 1 and b ∈ 0, 1. “a is
the point on which w changes from over-weighting to under-weighting; and b represents the
curvature of w”, as stated in Rieger and Wang (2006)). It possesses some favorable properties,
and some could be violated by the classic weighting functions. At the same time, w has a
concave-convex structure so that it is limited to inverse S-shaped weighting function. To give
a intuition of such a new weighting function, plots of w for different values of a and b are
displayed in Fig.2

Figure 2: Example of weighting function w by Rieger and Wang (2006)

w is linear when b = 1 since w(F ) = F , as the black dashed line displays. The yellow curve
depicts a concave-convex w with 0 < b < 1 and it crosses at a point w(F ) = F = 0.5. The
smaller b is, the more twisted w becomes. In this case, extreme outcomes are over-weighted. In
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the area of concave, the transformed cumulative probability function indicates optimism, since
the probability of good outcomes are over-weighted. Reversely, pessimism corresponds to the
area of convex, that the probability of bad outcomes are over-weighted instead.

Parameter a indicates the point n which the curve changes from concave to convex. If
we allow a = 1, w always over-weight probabilities as the red line shows. The estimated
weighting function on empirical data,as displayed later in Fig.3, has the parameter a statistically
indifferent from 1. It implies optimism when bad outcomes are under-weighted, even though the
curve changes from concave to convex at F = 2/3. Likewise, the bad outcomes are overweighted
if parameter a is fixed at 0, as the blue curve shows. Its curvature changes from concave to
convex at F = 1/3.

2.2 Scheduling models under RDU

Scheduling model can take different specification (see Vickrey (1973); Small (1982); Polak
(1987)), In this paper, two frequently applied scheduling models, a linear one and a quadratic
one are analyzed accounting probability weighting from RDU. Considering a trip departures at
time D, travel time of length T , and arrives at time D+T , the scheduling models are given by

U(T,D) =

{

αT + βmax(0,−(D + T )) + γmax(0, (D + T )) + κJ Linear
ηT − ν/2D2 + ω/2(D + T )2 + κJ Quadratic

(4)

The linear model provides the scheduling preference parameter α to travel time T , β to
arrival earlier than preferable arrival time (PAT) and γ to arrival later than PAT. PAT is
normalized at 0 without loss of generality. As we known that only the difference in utility
matters. When the difference in departure time and travel time are used as the input in utility,
PAT = 0 also means that the current arrival time is considered as preferable. The quadratic
scheduling model provides scheduling preferences parameters η, ν and ω. The penalty caused
by excessive travel time κJ is included according to Wang et al. (2012). The dummy variable
J is defined by

J =

{

1 if T > τ
0 otherwise

. (5)

The threshold τ determines the point at which a discrete penalty occurs. If T is continuous
distributed, τ could be estimated.

Assume that the random travel time T is distributed with a probability density function of
φ(T ) and cumulative probability function of Φ(T ), which is independent of time-of-day ii. The
expected scheduling utility is simply EU(D) =

∫∞
0 U(T,D)φ(T )dT , and the expected utility is

iiThe assumption that the travel time distribution is independent of the departure time could be unrealistic
and more discussion can be found in Fosgerau and Karlström (2010) and Wang et al. (2012)
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maximized by choosing the optimal departure time. The derivation of the linear and quadratic
scheduling models in Eq. 4 under EU maximization are shown in Appendix A.1 and Appendix
B.1 respectively. The maximal expected scheduling utilities LEU∗ and QEU∗ are yielded in
Eq.6 and Eq.7. The scheduling models was once presented in Wang et al. (2012), in which the
standardized travel time X with cumulative probability Φ(X) was used to represent the travel
time distributioniii.

LEU∗ = (α− β)µ+ (β + γ)

∫ 1

γ
β+γ

Φ−1(F )dF + κ(1− Φ(τ))dF (6)

QEU∗ = ηµ+
ω2µ2

2(ν − ω)
+

ω

2
(µ2 + σ2) + κ(1− Φ(τ))dF (7)

Rank depended scheduling utility is different from the expected one in the transformed
probability function. If we denote the weighted cumulative probability function as w[Φ(T )],
the probability density becomes

dw(Φ(T )) =
∂w(Φ(T ))

∂T
=

∂w[Φ(T )]

∂Φ(T )
φ(T )dT. (8)

The travel time is ranked from best to worst, i.e., from 0 to positive infinity. Then rank
dependent utility is given by

RDU(D) =

∫ ∞

0

U(T,D)
∂w(Φ(T ))

∂Φ(T )
φ(T )dT. (9)

By inserting the scheduling utilities of Eq.4 in Eq.9, the rank dependent linear scheduling
utility LRDU(D) and the rank dependent quadratic scheduling utility QRDU(D) are given
by Eq.10 and Eq.11.

LRDU(D) = α

∫ ∞

0

T
∂w[Φ(T )]

∂Φ(T )
φ(T )dT + β

∫ −D

0

−(D + T )
∂w[Φ(T )]

∂Φ(T )
φ(T )dT

+ γ

∫ ∞

−D

(D + T )
∂w[Φ(T )]

∂Φ(T )
φ(T )dT + κ

∫ ∞

τ

∂w[Φ(T )]

∂Φ(T )
φ(T )dT, (10)

QRDU(D) = η

∫ ∞

0

T
∂w[Φ(T )]

∂Φ(T )
φ(T )dT − ν/2D2 +

ω

2

∫ ∞

0

(D + T )2
∂w[Φ(T )]

∂Φ(T )
φ(T )dT

+ κ

∫ ∞

τ

∂w[Φ(T )]

∂Φ(T )
φ(T )dT (11)

iiiFosgerau and Karlström (2010) defined T = µ+ σX, where X is a standardize random variable with mean
0, variance 1, density φ(X) , and cumulative distribution Φ(x). Their results suggested that the derived form
of a linear scheduling model is a linear function of µ and σ. Wang et al. (2012) used Φ(X) in their analysis to
examine whether the favorable linear property is kept in the extended model specification. Transformation is
provided in Appendix A.3.
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In line with random utility maximization (RUM), individuals are assumed to have prefer-
ences over scheduling choices and they would adjust departure times D to maximize their rank
dependent utilities.

RDU∗ = max
D

RDU(D) (12)

By taking the first order condition of LRDU over D, the optimal departure time LRD∗ is
obtained in Eq.13. Likewise, QRD∗ is given in Eq.14. Derivations are found in Appendix A.2
and Appendix B.2

LRD∗ = −Φ−1

[

w−1(
γ

β + γ
)

]

(13)

QRD∗ =
ω

ν − ω

∫ 1

0

Φ−1(F )
∂w(F )

∂F
dF (14)

where the cumulative probability is notated as F = Φ(T ). By inserting the optimal departure
time into the rank dependent utility, the optimal rank dependent utility LRDU∗ and QRDU∗

are obtained in Eq.15 and Eq.16. The derivations are found in Appendix A.2 and Appendix
B.2 respectively.

LRDU∗ = (α− β)

∫ 1

0

Φ−1(F )
∂w(F )

∂F
dF

+ (β + γ)

∫ 1

w−1( γ
β+γ

)

Φ−1(F )
∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF (15)

QRDU∗ = η

∫ 1

0

Φ−1(F )
∂w(F )

∂F
dF +

ω2

2(ν − ω)
[

∫ 1

0

Φ−1(F )
∂w(F )

∂F
dF ]2

+
ω

2

∫ 1

0

[Φ−1(F )]2
∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF (16)

3 Data

A stated preference study was conducted to commuters, traveling towards and from the center
of Stockholm city by the subway and commuter trains during peak hours. The questionnaire
started with questions relating to their current trips, including travel time duration, ticket
price, constraints at origin or destination, safety margin, etc. Then respondents were faced
with two stated choice experiments, and they were asked to make a series of binary choices in
each experiment.
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Experiment 1 served for the purpose of estimating a scheduling model which assumed
respondents would trade-off departure times for travel times. The experiment contained binary
choices differing in the departure time d, travel time t and the travel cost c. Travel times T
was deterministic in Experiment 1. Experiment 2 was designed for estimating the derived-form
model which assumed the trade-off was made among travel time distribution characteristics.
Respondents were asked to make binary choices differing in the travel time t, travel cost c, the
probability of a delay p and its duration l. The travel times T was stochastic in experiment 2,
and it followed a binary travel time distribution defined as

Φ(T ) =







0 for T < t∗ + t
1− p for t∗ + t <= T < t∗ + t+ l
1 for T >= t∗ + t+ l

, (17)

where t∗ is the observed travel time iv.
An example of the binary choice Experiment 1 and Experiment 2 are displayed respectively

in table 1 and 2. Note that to cancel the trip is also offered as an option. More information
about the experimental design and sample statistics is provided by Börjesson et al. (2012)).

Departure1 Departure2

Start Time 25 minlater than today 5 min later than today

Travel time 15 minlonger than today 45 min longer than today

Ticket price e0.70 higher than today e0.40 lower than today

Arrival Time (45 min later than today ) (50 min later than today)

I choose 1 2

Cancel the trip 3

Table 1: Stated preference choice experiment 1

4 Estimation

Scheduling preference parameters for experiment 2 has been reported and discussed in Wang
et al. (2012), where estimation for experiment 1 is not included. Wang et al. (2012) focused
on the prof, whether the derived forms of extended scheduling models retain the linear prop-
erty in characteristics of travel time distributions. The hypothesis on the equivalence between
scheduling models and corresponding derived forms was once examined by Börjesson et al.
(2012). Their findings opposed the hypothesized equivalence. Since the conventional specifica-
tions of scheduling models have been extended, the comparison are carried out in this paper.

ivDoes the observed travel time t∗ affect scheduling choices of respondents? In other words, do the respondents
mentally consider that the travel time distribution depends on the observed travel time? This can make a
difference in the estimation for the quadratic model which is nonlinear in T
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Departure1 Departure2

Delay(if you made this
trip every day)

Once every other month, the
train is 45 min delayed All

other trip are on-time

Once every other week, the
train is 10 min delayed All

other trip are on-time

Travel time according to
the timetable:

3 min shorter than today 10 min shorter than today

Ticket price e0.20 higher than today e1.00 higher than today

I choose 1 2

Cancel the trip 3

Table 2: Stated preference choice experiment 2

The ratios between the scheduling preference parameter and the coefficient for travel cost are
presented and discussed in 4.4.

To make comparison for the effect RDU maximization on scheduling parameter estimates,
estimations on derived forms under EU maximization are presented in the first place. Both
MNL estimations and MXL estimations are displayed. Last but most importantly, we estimate
the derived scheduling models considering the probability weighting function w under RDU
maximization. The parameter estimates with robust t-statistics value are reported. Values of
Null Log-Likelihood (Null LL) and Final Log-Likelihood (Final LL), Adjusted Rho Square (Adj.
RS) and Akaike information Criterion with Correction (AICC) are computed as the criteria
for evaluating model performance v. To be clear, the abbreviations of estimated models are
explained in Tab.3.

4.1 Logit estimation

In Experiment 1, individuals are assumed to trade off their departure time D for travel time
T , as modeled by Eq.4. We estimate the models on data from Experiment 1, using Eq.18

U =

{

αT + βmax(0,−(D + T )) + γmax(0, (D + T )) + θDL + κJ + λc linear
(η + νω

ν−ω
t∗)T − ν/2D2 + ω/2(D + T )2 + κJ + λc quadratic

, (18)

where λ measures the marginal utility for travel cost c, and θ to the variable DL is the
lateness dummy for actual arrival time D+T surpassing the PAT at time 0 (Small (1982)).
The formulation for the quadratic model is derived (see derivation in Börjesson et al. (2012))
on the assumption that individual chooses an optimal departure time given the current travel
time duration t∗.

The derived forms of scheduling models are estimated on data from Experiment 2. Given

vRS = 1− L∗

L0 ; Adj.RS = 1− L∗−k

L0 ; AICC = 2(k − L∗) + 2k(k+1)
n−k−1

;

L∗ is Final Log-Likelihood; L0 is Null Log-Likelihood; k is number of parameters; n is sample size.
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Abbreviation Explanation

L or Q Linear or quadratic specification

U Scheduling models

EU∗ The derived forms of the conventional scheduling models

EU∗(θ) The derived form of the conventional linear scheduling model with the
coefficent θ for the lateness variable

EU∗(κ) The derived forms of the extended scheduling models with the coefficent κ
for the excessive travel time variable

RDU∗ The derived forms of the extended scheduling models under rank dependent
utility maximization

MXL Mixed logit estimation

Table 3: Explanation on abbreviations

the binary distribution, the derived models in Eq.(6) and Eq.(7) can be formulated as

EU∗ =











αµ+ γpl + θp ∗ 100 + κp ∗ 100 + λc linear, for γ

β+γ
< 1− p

αµ+ β(1− p)l + κp ∗ 100 + λc linear, for γ

β+γ
≥ 1− p

ηµ+ ω2

2(ν−ω)
µ2 + ω

2
(µ2 + σ2) + κp ∗ 100 + λc quadratic

, (19)

where µ = t∗ + t + pl and σ = l
√

p(1− p). Because of the binary travel time distribution,
the linear model has a piece-wise function. In addition,the variable of excessive travel time
frequency is equal to the probability of being delay p, provided that we have assumed the
lateness threshold τ ∈ (t, t+ l). The maximized expected value of lateness dummy DL equals
also to p. By scaling p by 100 in Eq.19, the parameter κ represents the marginal value to
percentage of excessive delays. The scale in p is kept for estimations afterwards.

We estimate scheduling models on data from experiment 1 and the corresponding derived
forms under EU maximization on data from experiment 2. Results of linear and quadratic
models are presented in Tab.4 and Tab.5.

All parameters reported are statistically significant different from 0. The discrete variable
J turns out to be zero in experiment 1 . I.e., we can not find a value for variable τ so that the
dummy variable J is active. Parameter κ estimated on experiment 2 appears as an important
explanatory. The contribution by allowing for the penalty of excessive travel time is sufficiently
discussed in Wang et al. (2012). If compared to parameter θ estimated in the derived form of
the linear specification, parameter κ has stronger power in fitting the scheduling preferences
when travel time is uncertain. Another difference between model LEU∗(θ) and LEU∗(κ) is
that the marginal utility of γ. Compared to γ in the original specification LEU∗, LEU∗(θ)
has lower absolute value of γ while LEU∗(κ) has much higher value. Adding the penalty for
excessive travel time frequency in the linear scheduling model result in the high preference
spending time at the destination after the PAT rather than at the origin. It implies that
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Experiment 1 Experiment 2

Models LU LEU∗ LEU∗(θ) LEU∗(κ)

Results Value Robust-t Value Robust-t Value Robust-t Value Robust-t

α -0.092 -16.952 -0.128 -7.702 -0.139 -8.011 -0.166 -14.496

β -0.062 -15.861 -0.096 -5.182 -0.089 -4.778 -0.035 -6.849

γ -0.058 12.822 -0.476 -4.829 -0.400 -3.844 -1.030 -6.978

λ -0.082 -15.017 -0.123 -9.51 -0.134 -9.584 -0.151 -15.063

κ or θ - - - - -0.018 -2.153 -0.100 -8.887

No. of observations 3226 2996 2996 2996

Null Log-Likelihood -2236.09 -2076.70 -2076.70 -2076.70

Final Log-Likelihood -1666.71 -1783.42 -1781.10 -1757.17

Rho square 0.255 0.141 0.142 0.154

Adj. Rho square 0.252 0.139 0.140 0.152

AICC 3347.46 3574.86 3572.33 3524.13

Table 4: Results of the MNL estimation of linear scheduling models

individuals have the stronger tendency to departure earlier to avoid uncertain delay.
Similar results are found in quadratic scheduling model. Parameter ω estimated on data

from experiment 1, representing the willingness of staying at work other than in the vehicle,
is insignificant different from 0. In other words, the slope of marginal utility of being at work
is constant when travel time T varies with certainty. So ω is fixed at 0 when estimating the
quadratic model in experiment 1. Both the derived forms of the original specification and the
extended specification with κ are estimated. Penalty of κJ for excessive travel time frequency
makes the preference of being early stronger and the slope of decreasing marginal utility of ω is
bigger. Note that results of quadratic scheduling model on experiment 1 are different from the
values in Börjesson et al. (2012), since the latter estimated an extra coefficient to replace νω

ν−ω
in Eq.18. Comparing model performances of the linear and the quadratic model, the quadratic
formulation fits the data of experiment 1 better than the linear formulation with one parameter
estimate less; whilst they achieve similar goodness of fit to the empirical data of experiment 2.

4.2 Mixed Logit estimation

The standard MNL estimation does not considered the random taste variation among individ-
uals. It is natural to allow for heterogeneity for individual scheduling preferences of spending
time at different activities. The panel effect is taken into consideration for the repeated choices
made by each individual. We assume the scheduling parameters are normal distributed, and we
use statistical tests to find significant standard deviation parameters of scheduling parameters.

103



Experiment 1 Experiment 2

Models QU QEU∗ QEU∗(κ)

Results Value Robust-t Value Robust-t Value Robust-t

η -0.125 -21.3082 -0.095 -4.4122 -0.102 -4.7422

ν 0.003 17.780 0.002 4.356 0.001 2.577

ω - - -0.009 -2.970 -0.026 -6.349

λ -0.104 -18.16 -0.154 -13.802 -0.137 -12.213

κ - - - - -0.066 -7.265

No. of observations 3226 2996 2996

Null Log-Likelihood -2236.09 -2076.70 -2076.70

Final Log-Likelihood -1621.91 -1783.45 -1755.44

Rho square 0.275 0.141 0.155

Adj. Rho square 0.272 0.139 0.152

AICC 3257.86 3574.82 3520.90

Table 5: Results of the MNL estimation of quadratic scheduling models

Börjesson et al. (2012) tested a triangular distributions in which scheduling parameters were
constrained to be negative. They conclude the normal distribution yields better results.

An exception is made for the MXL estimation of derived linear model. The linear model
has a piecewise function, as formulated in Eq.19. The piecewise function generates difficulty
in estimation because the simulated likelihood function is not differentiable everywhere. In
Appendix C, we discuss the problem and apply a sampling technique, Gibbs sampling, to draw
random values for scheduling parameters. We thus assume that α, β and γ in the derived linear
model are log normal distributed, even through Börjesson et al. (2012) argued that the data
do not support a log normal distribution with long and fat tail.

Tab.6 presents results MXL estimations of the linear models. In Experiment 1, σα and σβ
are found significant different from 0. The final log-likelihood is -1628.35, significantly better
than -1666.71 for MNL estimation in Tab.4 to, with two more parameters. No heterogeneity is
detected for the marginal utility of being at the destination γ, when travel time is delayed with
certainty. MXL estimations on Experiment 2 find statistical significant σα and insignificant σβ.
Though the random parameter σγ is statistically insignificant different from 0 in LEU∗ MXL1,
excluding σγ in LEU∗ MXL2 deteriorates the model performance, according to decreased final
log-likelihood. There is taste variation in the marginal utility of staying at the destination γ,
but it is difficult to capture such a variation with a distribution parameter. So the random
parameter σγ is insignificant and its value is unexpectedly high. The final Log-likelihood
is increased by nearly 100, comparing the MNL estimation of -1757.17 in 4 and the MXL
estimation of -1647.67. Such results show the significance in considering the heterogeneity of
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Experiment 1 Experiment 2

Models LU MXL LEU∗ MXL1 LEU∗ MXL2

Results Value Robust-t Value Robust-t Value Robust-t

α -0.123 -14.134 -0.375 -9.650 -0.416 -11.474

β -0.075 -14.302 -0.097 -6.503 -0.049 -7.087

γ -0.071 -12.903 -2.677 -3.293 -1.325 -6.568

λ -0.102 -14.074 -0.222 -13.226 -0.244 -16.043

κ - - -0.130 -7.749 -0.117 -7.473

σα -0.067 -8.521 0.556 4.967 0.536 5.854

σβ 0.021 2.369 - - - -

σγ - - 4.569 1.593 - -

No. of observation 3226 2996 2996

Null Log-Likelihood -2236.09 -2076.70 -2076.70

Final Log-Likelihood -1628.35 -1647.67 -1656.95

Rho square 0.272 0.207 0.202

Adj. Rho square 0.269 0.203 0.199

AICC 3268.73 3309.37 3325.93

Table 6: Results of the MXL estimation for linear scheduling models.

scheduling parameters.
MXL estimations of the quadratic models are reported in Tab.7. ση is statiscally significant

estimated on Experiment 1, improving the final log-likelihood of -1621.09 in Tab.5 to -1590.79.
The hypothesis on that parameters ν and ω follow normal distribution is rejected, indicating
that there is neither individual taste preferences to the slope of marginal utility of staying at
home other than in vehicle, nor to the slope of marginal utility of staying at work other than in
vehicle. The MXL estimation for Experiment 2 shows that parameter ν becomes insignificant,
if allowing for normal distribution for parameters η and ω. When travel time varies with
certainty, individuals are indifferent to the scheduling preference parameter ω, the slope of
marginal utility of beging at work other than in vehicle. On the other hand, individuals are
indifferent to the scheduling preference parameter ν, the slope of marginal utility of being at
home other than in vehicle when travel time varies with uncertainty. Again, including random
parameters improves the performance of the quadratic model in fitting the data. The final
Log-likelihood of the quadratic model is increased by 100 in the MXL estimation than in the
MNL estimation.

If the performance of linear and quadratic scheduling models are compared. MXL estima-
tion on Experiment 1 shows that quadratic one with 4 parameters outperforms the linear one
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Experiment 1 Experiment 2

Models QU MXL QEU∗ MXL

Results Value Robust-t Value Robust-t

η -0.161 -16.821 -0.285 -10.737

ν 0.003 15.910 - -

ω - - -0.063 -7.499

λ -0.128 -15.942 -0.211 -11.857

κ - - -0.087 -6.907

ση -0.070 -8.713 -0.257 -11.080

σν - - - -

σω - - 0.062 6.101

No. of observation 3226 2996

Null Log-Likelihood -2236.09 -2076.70

Final Log-Likelihood -1590.79 -1656.53

Rho square 0.289 0.202

Adj. Rho square 0.287 0.199

AICC 3189.59 3325.09

Table 7: Results of the MXL estimation for linear scheduling models.

with 6 parameters. Whilst MXL estimation on Experiment 2 draws different conclusion that
the linear one is slight better than the quadratic one, considering the degree of freedom. By
taking the heterogeneity, the quadratic model lose its advantage of nonlinearity to the linear
scheduling model. The MXL estimations provide us the knowledge on the heterogeneity that
allowed in the preference parameters. The next step is to investigate the proof of the probability
weighting in scheduling choices.

4.3 Derived models under RDU maximization

To remind us, the cumulative probability of outcomes, ranked from good to bad, are trans-
formed by the weighting function w. Provided the binary travel time distribution in Experiment
2, the cumulative probability is the probability of being on time 1 − p. There are only four
points for the variable 1− p in the data. This could cause difficulty in identifying parameters a
and b in the parametric weighting function w. Especially, the four discrete points are gathered
around small probabilities of being delayed p, and we might not be able to estimate the param-
eter a, which determines the point where the probability weighting function crosses between
over-weighting and under-weighting.

The general formulation of derived model taking into consideration of probability weight-
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ing in Eq.15 and Eq.16 are interpreted with respect to the binary travel time distribution in
Experiment 2, we have











αµ̃+ γ(1− w(1− p))l + κ(1− w(1− p)) ∗ 100 + λc Linear, for γ

β+γ
< w(1− p)

αµ̃+ βw(1− p)l + κ(1− w(1− p)) ∗ 100 + λc Linear, for γ

β+γ
≥ w(1− p)

ηµ̃+ ω2

2(ν−ω)
µ̃2 + ω

2
(µ̃2 + σ̃2) + λc+ κ(1− w(1− p)) ∗ 100 Quadratic

(20)

where µ̃ = t∗ + t+ (1− w(1− p))l and σ̃ = l
√

(1− w(1− p))w(1− p)

Models LRDU∗ MXL1 LRDU∗ MXL2 LRDU∗ MXL3

ML estimates Value Robust-t Value Robust-t Value Robust-t

α -0.386 -9.957 -0.386 -10.081 -0.421 -11.219

β -0.090 -5.699 -0.090 -5.725 -0.047 -5.868

γ -5.137 -1.267 -5.189 -1.397 -1.477 -2.073

λ -0.232 -12.653 -0.232 -13.167 -0.242 -14.310

κ -0.205 -1.882 -0.209 -4.918 -0.208 -2.168

σα 0.531 4.879 0.529 5.279 0.553 5.271

σγ 14.681 0.730 14.672 0.741 - -

a 0.991 3.611 1 - 1 -

b 0.410 2.224 0.409 2.265 0.154 0.959

No. of observation 2996 2996 2996

Null Log-Likelihood -2076.7 -2076.7 -2076.7

Final Log-Likelihood -1644.9 -1644.9 -1649.3

Rho square 0.208 0.208 0.205

Adj. Rho square 0.204 0.204 0.202

AICC 3305.93 3305.37 3314.57

Table 8: Results of the MXL estimation for linear scheduling models with probability weighting

We estimate the derived models under RDU maximization. The scheduling preference
parameters α and γ are assumed log normal distributed, according to the previous MXL
estimations. As aforementioned, a Gibbs sampling technique may be required in MXL es-
timation of the linear model. Tab.8 shows the results of the linear model. LRDU∗ MXL1

estimates the parameters a and b of the probability weighting function in Eq.3, parameter a
is found insignificant different from 1 and b is about 0.4. Thus we assume a = 1 in the model
LRDU∗ MXL2, and the model performance to the data is not deteriorated by fixing a at
1. Again, the random parameter σγ is statistically indifferent from 0, but removing it in the
model LRDU∗ MXL3degrades the model performance. The taste variation in the marginal
utility of staying at the destination other than at the origin should be kept. Thus, the model
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LRDU∗ MXL2 is chosen. The estimated probability function w in the derived liner scheduling
model is parameterized by a = 1 and b = 0.4.

Figure 3: Estimated weighting function w

The green curve in Fig.3 depicts the shape of the estimated weighting function. The prob-
ability of being delay in the data is p = {0.025; 0.05; 0.1; 0.2}, that is, the probability of being
on time 1 − p = {0.975; 0.95; 0.9; 0.8}. Thus partial curve in the domain [0.8, 1] is highlighted
with solid red line. A point of F = 1− p = 0.8 is analyzed. The objective probability of being
delayed is 0.2 and the subjected probability of being delayed is smaller than 0.2, because of
the transformation of weighting function. In other words, probabilities of being on time are
over-weighted. Such behavior corresponds to optimism, provided that the uncertain travel time
are ranked from best to worst in the domain of the analysis. This finding is consistent with
other empirical results, for instance, Hensher et al. (2011) found risk-taking attitude in his data
set where respondents were faced with risky route choices.

When estimating the same probability weighting function w with the quadratic specification,
the parameter b is statistically indifferent from 1. The nonlinearity in probability function is
statistically insignificant with the the quadratic specification. I.e., we cannot reject the expected
utility maximization in favor of rank dependent utility maximization. One reason could be that
the quadratic scheduling utility is concave per se and risk attitude is taken into account. On
the other hand, the risk attitude is captured by the probability weighting function when the
utility specification is linear. It is also difficult to estimate parameters in the weighting function
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w, provided the lack of variation in probability.
Evidently, values of scheduling preference parameters are affected by the transformed proba-

bility in rank dependent scheduling model. Thus the value of travel time variability by schedul-
ing preference could be different between EU assumption and RDU assumption. Another obser-
vation with RDU estimation is parameter κ retains its significance after introducing probability
weighting. In other words, the right tail of the travel time distribution is still evaluated as part
of value of travel time variability

4.4 Experiment 1 vs Experiment 2

One of the purposes in this paper is to analyze the equivalence between the scheduling model
and its derived form. I.e., the scheduling preference parameters estimated on Experiment
1 and Experiment 2 are compared. Theoretically, they could be reconciled. But such an
argument is denied by empirical results from Börjesson et al. (2012). The scheduling models
are extended by allowing for penalty of excessive travel time, considering random taste in
scheduling preferences, and including probability weighting in utility maximization. It is of
interest to make the comparison again for empirical evidence of equivalence. The ratio between
the scheduling parameter and the coefficient for travel cost is used for indication. Ratios
by estimating the scheduling models on Experiment 1 are computed and considered as the
reference values. Ratios by estimating the derived forms of scheduling models on Experiment 2
are computed and compared with the corresponding reference values. For the MXL estimation,
the mean of the parameter is used for computing the ratio and the variance is not considered
here.

Ratio LU LU MXL LEU∗ LEU∗(θ) LEU∗(κ) LEU∗ MXL2 LRDU∗ MXL2

α/λ 1.122 1.206 1.041 1.037 1.099 1.689 1.664
β/λ 0.756 0.735 0.781 0.664 0.232 0.437 0.388
γ/λ 0.707 0.696 3.870 2.985 6.821 12.059 22.366

κ/λ or θ/λ - - - 0.134 0.662 0.586 0.901

Table 9: Ratios from the linear scheduling model

Ratio QU QU MXL QEU∗ QEU∗(κ) QEU∗ MXL
η/λ 1.202 1.258 0.617 0.745 1.351
ν/λ -0.029 -0.023 -0.013 -0.007 -
ω/λ - - 0.058 0.190 0.299
κ/λ - - - 0.482 0.412

Table 10: Ratios from the quadratic scheduling model

Ratios from the linear scheduling model are presented in Tab.9. Ratios in the first two
columns are the reference values,which are compared with the corresponding ratios in the rest
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columns. The ratio γ/λ changes drastically across columns. γ/λ from model LEU∗ is 5 times
higher than the reference value from model LU or LU MXL. If the lateness penalty Small
(1982) is considered in LEU∗(θ), the difference is diminished by a small amount. The model
LEU∗(κ) is considered more consistent with the behavior in Experiment 2, but the ratio γ/λ
has even larger disparity, compared with the reference value. Such difference is enlarged in
the model LEU∗(κ) and LEU∗ MXL2. The difference among the ratios α/λ is rather small,
because they represents the value of mean travel time. The ratios β/λ are also similar across
columns. Another interesting finding is that the ratio κ/λ is larger than the ratio θ/λ.

Similar results are found with the quadratic models, displayed in Tab.10. The reference
values from the model QU and QU MXL show that the ratio ω/λ is 0 in Experiment 1. While
in Experiment 2, ω/λ becomes significant. In contrast, the ratio ν/λ decreases and become
insignificant, estimated in the model QEU∗ MXL.

In conclusion, no reconcile is found from the scheduling models, after considering the shape
of travel time distribution, random taste in scheduling preferences parameters, and probability
weighting. Individuals behave differently between Experiment 1 and Experiment 2, thus the
theoretical equivalence is not satisfied.
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5 Conclusion

Rank dependent utility maximization is applied in deriving a linear and a quadratic scheduling
model in this paper. The optimal departure time and maximal utility are different from that
under expect utility maximization in the transformed travel time density function. Probabil-
ity weighting is found when estimating the linear model and the estimated weighting function
suggests optimism behavior of respondents. One should interpret this finding with caution.
The nonlinearity in subjective probability weighting over ranked outcomes is only confirmed in
the derived linear scheduling specification. The data cover only a restricted domain where the
probabilities of delay are small. Respondents could behave as risk-taking when probabilities
of bad outcomes are small. The results also reveal the evidence of heterogeneity in scheduling
preferences. Moreover, evidence for the variable of excessive travel time beyond the traditional
scheduling model specification is found in all estimation, even with controlling for probabil-
ity weighting. Ratio between scheduling parameters and cost parameter are computed, and
significant differences are found between the scheduling models and its derived forms.

In conclusion, by allowing for penalties for excessive travel time and heterogeneity in
scheduling preferences parameters, the model performances of both the linear and quadratic
model are improved. The linear scheduling specification outperforms the quadratic one in the
expected utility framework. Since the linear model is further improved by subjective probabil-
ity weighting, the linear scheduling specification still outperforms the quadratic one in the rank
dependent utility framework. The linear scheduling specification, including random parame-
ters and an appropriate probability weighting, is thus recommended in studying departure time
choices and value of travel time variability. Individuals behave differently when facing uncer-
tain travel time, so the theoretical equivalence is not satisfied. For future work, it is of interest
to explore the linear scheduling model on different travel time distributions while considering
different weighting functions.
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A Linear model

A.1 Expected utility theory

LEU = α

∫ ∞

0
Tφ(T )dT + β

∫ −D

0
−(D + T )φ(T )dT + γ

∫ ∞

−D
(D + T )φ(T )dT + κ

∫ ∞

τ
φ(T )dT (21)

Take derivative of EU over departure time D

∂LEU

∂D
= β

[

−1 ∗ (−(D −D)) ∗ φ(D) +

∫ −D

0
−φ(T )dT

]

+ γ

[

−(−1) ∗ (D −D) ∗ φ(−D) +

∫ ∞

−D
φ(T )dT

]

= −β

∫ −D

0
−φ(T )dT + γ

∫ ∞

−D
φ(T )dT

= −β [Φ(−D)− Φ(0)] + γ [Φ(∞)− Φ(−D)]

= −(β + γ)Φ(−D) + γ (22)

F.O.C to maximize the EU
LD∗ = −Φ−1(

γ

β + γ
) (23)

The maximal utility is

LEU∗ = αµ+ β

∫ Φ−1( γ
β+γ

)

0
[Φ−1(

γ

β + γ
)− T ]φ(T )dT + γ

∫ ∞

Φ−1( γ
β+γ

)
[−Φ−1(

γ

β + γ
) + T ]φ(T )dT + κ

∫ ∞

τ
φ(T )dT

= αµ+ βΦ−1(
γ

β + γ
)

∫
γ

β+γ

Φ(0)
dF − β

∫
γ

β+γ

Φ(0)
Φ−1(F )dF

− γΦ−1(
γ

β + γ
)

∫ Φ(∞)

γ
β+γ

dF + γ

∫ Φ(∞)

γ
β+γ

Φ−1(F )dF + κ

∫ Φ(∞)

Φ(τ)
dF

= αµ− β

∫
γ

β+γ

0
Φ−1(F )dF + γ

∫ 1

γ
β+γ

Φ−1(F )dF + κ(1− Φ(τ))

= (α− β)µ+ (β + γ)

∫ 1

γ
β+γ

Φ−1(F )dF + κ(1− Φ(τ)) (24)
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A.2 Rank dependent utility theory

a rank dependent utility is evaluated

LRDU = α

∫ ∞

0
T
∂w[Φ(T )]

∂Φ(T )
φ(T )dT + β

∫ −D

0
−(D + T )

∂w[Φ(T )]

∂Φ(T )
φ(T )dT

+ γ

∫ ∞

−D
(D + T )

∂w[Φ(T )]

∂Φ(T )
φ(T )dT + κ

∫ ∞

τ

∂w[Φ(T )]

∂Φ(T )
φ(T )dT (25)

To derive LRDU regarding D

∂LRDU

∂D
= β

[
∫ −D

0
−
∂w[Φ(T )]

∂Φ(T )
φ(T )dT

]

+ γ

[
∫ ∞

−D

∂w[Φ(T )]

∂Φ(T )
φ(T )dT

]

= −β

∫ Φ(−D)

Φ(0)

∂w[Φ(T )]

∂Φ(T )
dΦ(T ) + γ

∫ Φ(∞)

Φ(−D)

∂w[Φ(T )]

∂Φ(T )
dΦ(T )

= −β

∫ w[Φ(−D)]

w[Φ(0)]
dw[Φ(T )] + γ

∫ w[Φ(∞)]

w[Φ(−D)]
dw[Φ(T )]

= −β {w[Φ(−D)]− 0] + γ [1− w[Φ(−D)]}

= −(β + γ)w[Φ(−D)] + γ (26)

F.O.C to maximize the utility

LRD∗ = −Φ−1

[

w−1(
γ

β + γ
)

]

(27)
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The maximal rank dependent utility is

LRDU∗ = α

∫ ∞

0
T
∂w[Φ(T )]

∂Φ(T )
φ(T )dT + β

∫ Φ−1
[

w−1( γ
β+γ

)
]

0

{

Φ−1

[

w−1(
γ

β + γ
)

]

− T

}

∂w[Φ(T )]

∂Φ(T )
φ(T )dT

+ γ

∫ ∞

Φ−1
[

w−1( γ
β+γ

)
]

{

−Φ−1

[

w−1(
γ

β + γ
)

]

+ T

}

∂w[Φ(T )]

∂Φ(T )
φ(T )dT + κ

∫ ∞

τ

∂w[Φ(T )]

∂Φ(T )
φ(T )dT

= α

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF − β

∫ w−1( γ
β+γ

)

0
Φ−1(F )

∂w(F )

∂F
dF

+ γ

∫ 1

w−1( γ
β+γ

)
Φ−1(F )

∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF

= (α− β)

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF + (β + γ)

∫ 1

w−1( γ
β+γ

)
Φ−1(F )

∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF (28)
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A.3 Transformation of the linear scheduling model

If we standardized random variable X to present random travel time as T = µ+ σ ∗X, with CDF s = ΦX(x)

LD∗ = −µ− σΦ−1
X (

γ

β + γ
) (29)

LEU∗ = (α− β)µ+ (β + γ)

∫ 1

γ
β+γ

(µ+ σΦ−1
X (s))ds+ κ(1− ΦX(

τ − µ

σ
))

= αµ+ (β + γ)σ

∫ 1

γ
β+γ

Φ−1
X (s)ds+ κ(1− ΦX(

τ − µ

σ
)) (30)

LRD∗ = −µ− σΦ−1
X

[

w−1(
γ

β + γ
)

]

(31)

LRDU∗ = α

∫ 1

0
Φ−1
X (s)

∂w(s)

∂s
ds+ (β + γ)σ

∫ 1

w−1( γ
β+γ

)
Φ−1
X (s)

∂w(s)

∂s
ds+ κ

∫ 1

ΦX( τ−µ
σ

)

∂w(s)

∂s
ds (32)
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B Quadratic model

B.1 Expected utility theory

QEU = η

∫ ∞

0
Tφ(T )dT − ν/2D2 + ω/2

∫ ∞

0
(D + T )2φ(T )dT + κ

∫ ∞

τ
φ(T )dT (33)

Take derivative of QEU over the departure time D

∂QEU

∂D
= −νD + ω/2

∫ ∞

0
(2D + 2T )φ(T )dT

= −νD + ωD

∫ ∞

0
φ(T )dT + ω

∫ ∞

0
Tφ(T )dT

= −νD + ωD + ωµ

= (ω − ν)D + ωµ (34)

F.O.C to maximize QEU

QD∗ =
ω

ν − ω
µ (35)

The maximal utility regarding QD∗

QEU∗ = ηµ− ν/2(
ω

ν − ω
µ)2 + ω/2

∫ ∞

0

{

(
ω

ν − ω
µ)2 + 2

ω

ν − ω
µT + T 2

}

φ(T )dT + κ[1− Φ(τ)]

= ηµ−
νω2µ2

2(ν − ω)2
+

ωω2µ2

2(ν − ω)2
+

ω2µ2

ν − ω
+ ω/2

∫ ∞

0
T 2φ(T )dT + κ[1− Φ(τ)]

= ηµ+
ω2µ2

2(ν − ω)
+ ω/2(µ2 + σ2) + κ[1− Φ(τ)]

= ηµ+
νωµ2

2(ν − ω)
+ ω/2σ2 + κ[1− Φ(τ)] (36)
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B.2 Rank dependent utility theory

QRDU = η

∫ ∞

0
T
∂w[Φ(T )]

∂Φ(T )
φ(T )dT−ν/2D2+ω/2

∫ ∞

0
(D+T )2

∂w[Φ(T )]

∂Φ(T )
φ(T )dT+κ

∫ ∞

τ

∂w[Φ(T )]

∂Φ(T )
φ(T )dT (37)

Take derivative of QRDU over departure time D

∂QRDU

∂D
= −νD + ω

∫ ∞

0
(D + T )

∂w[Φ(T )]

∂Φ(T )
φ(T )dT

= −νD + ωD

∫ ∞

0

∂w[Φ(T )]

∂Φ(T )
φ(T )dT + ω

∫ ∞

0
T
∂w[Φ(T )]

∂Φ(T )
φ(T )dT

= −νD + ωD

∫ Φ(∞)

Φ(0)

∂w(F )

∂F
dF + ω

∫ Φ(∞)

Φ(0)
Φ−1(F )

∂w(F )

∂F
dF

= −νD + ωD

∫ w(1)

w(0)
dw(F ) + ω

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF

= (ω − ν)D + ω

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF (38)

F.O.C to maximize QRDU

˜QRD∗ =
ω

ν − ω

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF (39)
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The maximal rank dependent utility regarding QRD∗

˜QRDU∗ = η

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF −

ν

2

ω2

(ν − ω)2
[

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF ]2

+ ω/2

∫ 1

0

{

ω2

(ν − ω)2
[

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF ]2

}

∂w(F )

∂F
dF

+ ω/2

∫ 1

0

{

[
2ω

ν − ω

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF ]Φ−1(F )

}

∂w(F )

∂F
dF

+ ω/2

∫ 1

0
[Φ−1(F )]2

∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF

= η

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF −

{

ν

2

ω2

(ν − ω)2
−

ω

2

ω2

(ν − ω)2
−

ω2

ν − ω

}

[

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF ]2

+ ω/2

∫ 1

0
[Φ−1(F )]2

∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF

= η

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF +

ω2

2(ν − ω)
[

∫ 1

0
Φ−1(F )

∂w(F )

∂F
dF ]2

+ ω/2

∫ 1

0
[Φ−1(F )]2

∂w(F )

∂F
dF + κ

∫ 1

Φ(τ)

∂w(F )

∂F
dF (40)
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C Gibbs Sampling

In the linear scheduling model, an individual would prefer to depart early (or late) if

γ

β + γ
(>) < 1− p, (41)

where β and γ are the individual’s preference parameters and p is the probability of a delay,
given the travel time distribution. The probability p is different between different alternatives,
depending on the question posed in Experiment 2. An individual with own preference β and
γ can switch between his or her behavior. I.e., the individual departure early in some cases
(Case I ), whilst departure late in some other cases (Case II ). When allowing distribution
for scheduling preference parameters, to maximize a standard simulated likelihood function
becomes infeasible. Because the standard simulated likelihood is continuous but non-smooth,
thus a maximum may be found but it is likely to be located at a kink of the simulated likelihood
function. Consider individual i has a likelihood contribution, depending on the distribution of
the two parameters and the probability Pi reflecting the individuals behavior conditional on β
and γ.The likelihood function of individual i is given by

Li(θ) =

∫ ∫

Pi(β, γ)f(β, γ; θ)dβdγ

where θ represents the distribution parameters, such as mean and variance. It could be ap-
proximated by simulating D draws of (βn, γn) from the distribution f(β, γ; θ), as formulated
by

Li(θ) ≈
1

D

D
∑

d=1

Pi(βn, γn)

Now we illustrate how does the draws change as the mean of γ changes in Fig. 4
We postulate an artificial threshold line β = γ, splitting domain into Case I and Case

II. The initial draws are all shifted upwards in the γ-dimension, when holding β = 1.6 and
increasing the mean of γ. As shown in the figure, one draw, out of five draws, cross the
threshold line we supposed. For this particular draw, the individual change behavior from
Case I to Case II. Thus the utility function is continuous moving across the threshold, but
its derivative is not, generating a discontinuity in the derivative of the individual’s likelihood
contribution. Such a kink at the optimum causes the problem in applying simulated maximum
likelihood estimation.

As a remedy to this problem, we propose an estimator based on breaking up the integra-
tion of the likelihood function into domains, where none of the individual’s draws cross any
thresholds. Such conditional draws generate conditional likelihood contributions, constructing
smooth simulated likelihood function in the parameters of interest. First of all, domain a is
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Figure 4: One critical draw, where β ≈ 1.6, which crosses the threshold line when the mean of γ
is increased. * denotes draws before increase in mean, and o denotes draws after the increase.

separated by the thresholds, which depends on the probability of being delay p and scheduling
preference parameter (β, γ). In the questionnaires, there are four distinct probabilities and
they are ordered from the largest to the smallest, i.e. p = (p1 > p2 > p3 > p4). Thus the space
is partitioned into five disjunct domains as

a =























1 : {(β, γ)|(β, γ) ≥ 0, and γ < β(1− p1)/p1}
2 : {(β, γ)|(β, γ) ≥ 0, and β(1− p1)/p1 ≤ γ < β(1− p2)/p2}
3 : {(β, γ)|(β, γ) ≥ 0, and β(1− p2)/p2 ≤ γ < β(1− p3)/p3}
4 : {(β, γ)|(β, γ) ≥ 0, and β(1− p3)/p3 ≤ γ < β(1− p4)/p4}
5 : {(β, γ)|(β, γ) ≥ 0, and γ ≥ β(1− p4)/p4}

Each question with a specific probability p makes a threshold line. Draws within each domain
do not cross the threshold line, and the probability of each domain is given by

Pa(θ) =

∫ ∫

a
f(β, γ; θ)dβdγ. (42)
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Then the individual likelihood contribution is integrated over the domains

Li(θ) =
∑

a

Pa(θ)Li|a(θ), (43)

Given the draws in domain a, The conditional likelihood function in this domain is approxi-
mated by the simulation

Li|a(θ) ≈
1

D

D
∑

d=1

(

Pi(βd|a, γd|a)
)

(44)

As a result, individual will not cross between Case I and Case II. Such conditional draws of
(βd|a, γd|a) requires a technique in sampling, and Gibbs Sampling is used. We assume that β and
γ are independently distributed with marginal distributions logN(µβ , σβ), and logN(µγ , σγ).
For each domain, we alternate between drawing either a β or a γ, with truncation limits
conditional on the proceeding draw and the thresholds. E.g, to make draws in domain a = 1,
we start with a draw βn from logN(µβ , σβ), and alternate to draw γn from logN(µγ , σγ), which
is truncated by γ < β(1− p1)/p1. Typical draws are displayed in Fig 5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
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Figure 5: Draws with Gibbs Sampling within the five domains of (β, γ)
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