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Abstract 

This paper addresses the lack of reliability within the Swedish rail network by identifying 

passenger train delay distributions. Arrival delays are analyzed in detail using data provided by the 

Swedish Transport Administration, covering all train departures and arrivals during 2008 and 

2009. The paper identifies vulnerabilities by size, space and time in the network. Our results show 

that the delay distribution seems to be plagued by low probability high impact events. A major 

share of all delay time is associated with the tail of the delay distribution, indicating that extreme 

delays cannot be neglected when prioritizing between measures improving rail infrastructure. 

Delays are not only concentrated in size, but also concentrated in space and time and seem to 

follow a precise power law with respect to days and an exponential distribution with regard to 

stations. Moreover, we also examine the link between capacity usage and expected delay over 

different time scales. 
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1. Introduction  

 Passenger train delays are an important policy problem. Not only do delayed passenger trains 

mean lack of reliability in the transport system, which is a concern for travelers choosing rail as 

their main transport mode, but also influences peoples travel behavior, including mode choice 

and departure time. Today, when a large share of car ridership is evident, with environmental 

problem as a negative external effect, public transport and especially rail transport plays a 

significant role for the development of sustainable transport options. However, frequent train 

delays may lead to decreased train ridership and since the lack of reliability means a disadvantage 

compared to other transport modes, measures to reduce delays and improve reliability of train 

services is of high importance. Improved reliability first and foremost is a major benefit for the 

many existing users of rail services in terms of travel time savings and reduced uncertainty. It 

could also encourage car users to switch mode to rail. 

In Sweden, train delays are an ongoing problem, pronounced by the recent harsh winters, 

and also in many other countries the railway network seems to be vulnerable to various kinds of 

disruptions and incidents. Small disturbances at one rail section can have an impact at other rail 

sections far from the original one, a so called knock-on effect. For this reason, delays in 

passenger trains in one section may affect a large number of trains and passengers over a much 

wider area. Lack of reliability of the system occurs many times due to capacity bottlenecks of the 

railway system, especially near main stations where many train lines are intersecting. Where a high 

number of links is connected the network system becomes very complex and thereby implies a 

high risk of large delays (Herrmann, 2006). Many networks because of interdependence between 

links have shown to be vulnerable. 

Identifying the distribution of train delays and analyzing the delays by how the size is 

distributed, where they occur and when they occur could give an insight to where measures for 

improved reliability should be directed. Whereas the value of travel time savings (VTTS) is a 

major factor in policy evaluation, the value of travel time variability VTTV is still not considered 

explicitly. Hence, by incorporating VTTV into cost-benefit analysis of infrastructure projects, 

current policies could be modified and reliability improved by shifting focus towards measures to 

reduce travel time variability. 

However, to date, no study has examined the distribution of passenger train delays in 

Sweden. Even for other countries knowledge about rail delays is limited, for an overview see 

Section 2. Other studies are mainly focused on road delays. Because of rail services are subjected 

to time tables, rail and road travel time distributions and their valuation cannot be compared. 
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In order to meet the overall objective to identify weaknesses in the rail network by modeling 

train delay distributions, the following more specific research questions will be addressed: i) how 

much variation exists between scheduled and actual arrival times and what is the share of extreme 

time deviations of total time deviation?, ii) which are the critical geographical areas within the rail 

network?, iii) what are the distributions of delays over time and iv) what is the link between 

capacity usage and average delay for different times of day, weekdays and months. Based on these 

research questions, this paper will shed some light on the vulnerability of the Swedish transport 

system and examine potential policy implications with regard to how to measure, value and 

handle delays in transportation systems. This includes how to assess VTTV. The analysis is put in 

the Swedish context but is possibly transferable and comparable to those in other countries, since 

all rail networks share important basic properties which probably affect rail delays. 

The paper is structured as follows: Section 2 gives a background of the Swedish rail network 

and reviews the literature about train delays and lack of reliability. The data is described in 

Section 3 and analyzed in Section 4. Knowledge about passenger train delay distributions, i.e. the 

size of delays and where and when they occur, is needed in order to increase reliability of the rail 

network. The analysis is therefore based on three different delay distributions, namely, size-

frequency analysis, spatial analysis and temporal analysis. The size distribution reveals if the many 

small or the few large delays do account for the majority of problems. By studying the spatial 

distribution of train delays it can be distinguished where in the system delays are most common. 

Temporal distribution analysis is concerned with how delays aggregated over time scales (here: 

days) are distributed. We also analyze the link between capacity usage and average delays for 

times of day, weekdays and months. In Section 5 we give some implications and Section 6 

concludes.  

 

2. Delays and reliability 

2.1 Definition of reliability 

 In public transport the term delay is normally used to refer to the difference between 

scheduled arrival time and actual arrival time at stations, which may result in early or late arrival, 

while the term reliability is defined as on-time performance or more general as a measure of 

transportation system performance. In other definitions, reliability is a measure of variability of 

travel time and in the transportation research literature the concept of travel time variability 

therefore often has a similar definition as travel time reliability, that is, high variability means high 

unreliability, and vice versa. Another related concept is that of vulnerability in the transport system, 
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which is viewed as a problem of insufficient level of service or the function of the system 

(Berdica, 2002). 

Related to reliability is also the definition of punctuality, which normally refers to whether a 

train is running on time, with the provision of an acceptable deviation. The Swedish Transport 

Administration until recently considered a train to be punctual if it arrives within five minutes of 

delay to its final destination. This holds true for most European railway companies as well. 

Therefore, if a train runs within the accepted deviation from the timetable, it is regarded to be 

punctual. However, punctuality as a reliability indicator gives only limited information about train 

delays, it does not account for the size of the delay, since the large number of smaller train delays 

are not considered as delays, nor the travel time variation (Brons and Pietveld, 2011). It is also 

questionable if punctuality is an appropriate measurement of rail performance since the traveler 

perception of what a delay is might differ. For example, the Swedish Transport Administration 

recently changed the definition of punctuality from 5 to 15 minutes. Therefore we will in this 

paper focus on delays and lack of reliability, and henceforth, the terms are used interchangeably. 

 

2.2 Distributions of delays 

Identifying the distribution of delays is an important first step in describing, measuring and 

valuing reliability. Naturally, the distribution parameters will vary with size (e.g. a different 

distribution for the tails), differ between parts of the network (e.g. in central nodes) and vary over 

time. However, identifying the kind of distribution the delays follow and estimating distribution 

parameters might be a good prior when predicting delays for segments or other rail networks 

where data is lacking. Moreover, the distribution might give us a hint what mechanism 

determines delays, since a certain mechanism is sometimes associated with a certain distribution 

of outcomes (e.g. the snowball effect will lead to a Yule-distribution). 

The normal distribution cannot be reconciled with the observed skewness of delay 

distributions. A more common model to explain delays in railway systems is the negative 

exponential distribution. A German study by Schwanhäuβer (1974) is probably the first study 

concluding that the tail of arrival delays follows the negative exponential distribution for arrival 

delays of passenger trains at the stations. This result is confirmed by later studies (Goverde et al., 

2001; Yuan et al., 2002; Goverde, 2005; Haris, 2006). Other studies have used other distribution 

models, like the Weibull distribution, the gamma distribution and the lognormal distributions 

(Higgins and Kozan, 1998; Bruinsma et al., 1999; Yuan, 2006). These models better capture the 

distribution of late arrival and departure times. Yuan (2006) compares the goodness-of-fit among 

several distribution models selected for train event times and process times by fine-tuning the 
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distribution parameters for data recorded at The Hague railway station. He finds that the Weibull 

distribution can be considered as the best distribution model for arrival delays, departure delays 

and the free dwell times of trains. Güttler (2006) fits a normal-lognormal mixed distribution to 

assess running times of trains between two stations using the data obtained for the German 

railway. Briggs and Beck (2007) find in a study on the British railway network that the 

distribution of train delays can be described by so-called q-exponential functions (closely related 

to the exponential distribution). 

 

2.3 Measures of reliability 

Many different measures for reliability have been proposed. These can in general be divided 

into two main groups: measures of dispersion and schedule delay (Carrion and Levinson, 2012). 

The first approach, measure of dispersion, reveals the spread of the data in the travel time 

distribution and includes the range, buffer time, planning index, average deviation, variance, 

standard deviation and percentiles. Average delay has been a common measure for public 

transport for a long time, and many studies still use average delay per train as an indicator of 

punctuality. Börjesson and Eliasson (2011) conclude from a stated-choice experiment that using 

the average delay as a measure of reliability will be misleading, at least if the aim is to reflect the 

preferences of travelers. The standard deviation has also been a common measure of reliability in 

past studies, especially in public transport with many departures (Bates et al., 2001, Paulley et al., 

2006). It could be expressed in waiting times or in-vehicle times and measures the mean deviation 

around the sample mean. This has been criticized since it does not consider the skewness of the 

travel time distribution and hence assumes that travelers values both early and late arrivals 

equally. Hence, the percentile measure e.g. when comparing the 90th percentile with the median, 

seems preferable, since it captures more extreme deviations and covers only the right side of the 

distribution, implying that travelers only value lateness. 

 The second approach, the schedule delay measure, is based on traveler’s schedules and their 

associated distribution of travel times. Here early and late arrivals can be valued differently, 

depending on the traveler’s disutility and inconvenience associated with arriving earlier or later 

than preferred. However, from a practical perspective, schedule delay, compared to measures of 

dispersion, is more complicated since it requires knowledge about traveler’s schedules and 

preferred arrival times, why measures of dispersions are generally more common.  
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2.4 Valuation of reliability and delays 

Low reliability makes it hard to predict how long a trip will take and this uncertainty force 

travelers to use safety margins to reduce the risk of being late. Sometimes the margin is not 

enough and the traveler will be late. To some travelers, this is not a problem, but for some it is, 

and the delay comes at a cost to the traveler (Transek, 2006). Passengers might face waiting times, 

or the need to reschedule activities. As Peer et al. (2012) reports, with most people being risk-

averse, the uncertainty of arrival time might be accompanied by feelings of stress and anxiety. 

The economic loss is the sum of “unnecessary” extra margins and the occurred delays. However, 

compared to small delays that most passengers have margins for, sometimes large delays occur, 

which cause more inconvenience for the passengers. Unpredictable delays are often so long and 

infrequent that applying extra time margins seem unreasonable. These events do not only lead to 

an increase of average travel time but also to a large variance, and hence to lack of reliability. 

Many unpredictable delays cannot be foreseen and taken into account by travelers (Rietveld et al., 

2001; Fosgerau et al., 2008).  

When measures to improve reliability, like increased maintenance and investments in new 

rail infrastructure, are evaluated by means of cost-benefit assessments, it is important to have 

information about how travelers value time savings and reliability. Benefits associated with 

reduced travel time variability are not taken into account in a proper way (Fosgerau et al., 2008). 

In the official Swedish recommendations for appraisal of transport related projects, the 

recommendation is for rail to multiply delays with 3.5 times the value of in-vehicle travel time 

(Trafikverket, 2012). For vulnerability, characterized by infrequent large delays, there are no 

recommended monetary values.      

 

3. Data 

3.1 Characteristics of the Swedish rail network 

 The Swedish rail network consists of almost 12,000 track-kilometers, of which the Swedish 

Transport Administration owns and manages approximately 90 percent (Government Offices of 

Sweden, 2011). The railway network in Sweden spans the entire country, but due to very uneven 

population distribution, the railway network is denser in the metropolitan areas in the south 

(Stockholm, Gothenburg and Malmö) and sparser in the north where the country is less densely 

populated. The major part of the railway network has single tracks, and only around 30 percent 

of the network has two or more parallel tracks (Banverket, 2010a). That could be compared to 

many other European countries, where the amount of parallel tracks is about 35 percent 

(International Union of Railways, abbreviated UIC, 2008 referred in Lindgren et al., 2009).  
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What is unique for Sweden is that the passenger and freight trains use more or less the same 

infrastructure and operation system, where the passenger train-kilometres stand for about 70 

percent of all train-kilometres. However, the extent of traffic blend varies a lot between different 

routes. The proportion of freight trains is higher in the north (over 80 percent between Kiruna 

and Riksgränsen) but lower towards Stockholm (under 10 percent) and about 25 percent towards 

Gothenburg and Malmö. The traffic blend is especially great on the Southern main line and the 

Western main line, i.e. between the three major metropolitan areas. The extent of this traffic 

blend is much higher than in many other countries (Nilsson, 2002). Consequently, with 70 

percent single tracks and a large extent of traffic blend, the Swedish rail infrastructure is 

vulnerable in itself and a disturbance somewhere in the rail network can have huge consequences. 

One could argue that one of the advantages of passenger trains is the economic 

competitiveness in its high capacity; trains are capable to transport many passengers. Compared 

to other modes, rail operates on a network that is separated from other traffic, and therefore is 

not affected by congestion and traffic jams to same extent. This would imply that traffic flow is 

regulated such that it is more efficiently distributed. But since the network requires track, 

signaling and electric power as well as infrastructure and stations to be built and maintained, 

passenger trains is often less flexible, than other modes. The rail network is therefore very 

vulnerable to incidents and other unpredictable events. 

 In Sweden, train travel is a common mode of transport and there are various categories of 

passenger trains running the network, all differentiated by the distance they run, the speed and 

the level of service and comfort. The long distance passenger traffic is in the form of high-speed 

trains, double-deckers, InterCity trains and night trains, whereas the local and regional passenger 

trains are often part of the urban public transport system. However, with many different types of 

trains running the same tracks the situation becomes complicated. The official statistics about 

punctuality in the Swedish railway network reveals that during 2008 and 2009, 92 percent of the 

passenger trains were punctual, i.e. arrived to its final destination at most five minutes behind 

schedule (Banverket, 2010a). What is notable is the difference among different train categories, 

especially the low punctuality for high-speed trains, where only 69 percent of the trains were 

punctual 2008 and 76 percent 2009. It highlights a problem for high-speed trains – they are likely 

to get stuck on a slow track, i.e. behind a train with more stops. 

During the last twenty years the passenger train traffic has more than doubled and during 

2008 the total amount of train travel in Sweden was 179 million trips (Trafikanalys, 2012), which 

makes approximately 500,000 trips per day (Government Offices of Sweden, 2011). The same 

number holds true for 2009. With more traffic, the tracks become crowded and the system 
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becomes more vulnerable to disruptions, with reliability problems as a consequence. The total 

delay hours for passenger trains increased with about 9.5 percent, from 28,312 hours 2008 to 

31,002 hours 2009 and the number of cancelled trains was doubled from 12,431 in 2008 to 

26,030 in 2009 (Banverket, 2010a; Banverket, 2010b), indicating severe problems in the Swedish 

rail network. 

In total, the number of passenger-kilometres was slightly more than 11 billion in 2008 and 

2009 respectively, at that time, the highest level ever in Sweden, which also ranks Sweden as the 

8th country in the European Union with highest number of passenger-kilometres (Eurostat, 

2011). By expressing the passenger volumes in relation to population size, we get approximately 

1,200 passenger-kilometres per Swedish inhabitant per year, during 2008 and 2009 respectively 

(Trafikanalys, 2012). This is a high number, only Sweden, Denmark and France in the European 

Union accounts for averaging more than 1,000 passenger-kilometres per inhabitant, revealing the 

importance of rail as a transport mode in Sweden. 

 

3.2 Delay data 

 The Swedish Transport Administration (Trafikverket), the authority responsible for the 

overall planning of the traffic on the track and maintenance of the national rail network as well as 

the statistics on delays, has developed a monitoring system covering all trains. A database has 

been constructed that includes information about to what extent freight trains and passenger 

trains arrive on time at stations. The delay data covers all intermediate stations and sections in 

between, not only the final destination. To date, information for 2008 (characterized by 

economic boom) and 2009 (recession due to the financial crisis materializing in late 2008) is 

available. 

There are unique train numbers for trains that go between certain origins and destinations 

(OD) on a certain time. The train numbers represents information about, among others, if trains 

are operated in national or international traffic, travelling to the north or south and by which 

operator. For each train, event times along the route, including arrival and departure time at the 

origin and destination and all sections in between, are given. Based on the information in the 

database OD-distance, scheduled and actual travel time, speed, as well as arrival and departure 

delays have been calculated. Codes for any problem or cancelation at any stations or sections are 

also given, where approximately two-thirds of all delay minutes result from problem in traffic 

management and operation, one-sixth of all delay minutes relates to problem in infrastructure 

and the rest are due to vehicle problems, planned track work or other reasons.  
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The raw database contains approximately 17 million observations for 2008 and 2009 

respectively, including data of every single train and it’s time deviation at different measurement 

points along the tracks. In the data cleaning process, only primary origin-destination observations 

based on major intermediate stations were included, i.e., all stops where passenger interchange 

did not occur were removed from the database. Likewise, cancelled trains and any obvious 

inaccurate, incomplete or unreasonable observations in the database were removed, which in the 

end yielded approximately 1.6 million observations in 2008 and 2009 respectively. The purpose 

of this paper necessitates the inclusion of extreme values, so we do not exclude outliers from the 

data, but obviously inaccurate observations were eliminated before further analysis. For example, 

trips with obviously incorrect dates for arrival (arrival before departure) were excluded.  

The variable of interest in this paper is arrival delay. Arrival delay is computed as the 

difference between the actual arrival time and the scheduled arrival time. Hence, positive arrival 

deviation time correspond to late arrival and negative values to early arrival. According to the 

definition of the Swedish Transport Administration definition trains are considered punctual if 

they arrive less than 15 minutes behind schedule at the final station.  

 

 

4. Analysis 

4.1 Size-frequency delay distribution 

4.1.1 Analysis of percentiles 

In this paper, one of the issues we want to examine is the distribution of passenger train 

delays with regard to their size. The basic question is what distribution delays follow and the 

extent of deviation from the normal distribution. For a passenger the expected delay per train 

and the probability of a delay of a certain size per train might be relevant for mode and departure 

choice. In Figure 1 we plot in a histogram the distributions for deviations from planned arrival 

time for both years in our study. Most frequent are the events that trains are on time, a few 

minutes early and few minutes late. The distribution is skewed to the right in that there are more 

delayed trains than early trains. Moreover, there are a number of trains with very large arrival 

delays (the x-axis is truncated at 60 minutes). We show in Figure 1 also the best fitting normal 

distribution. As can be seen, the punctual trains are actually more frequent than predicted by the 

normal distribution, whereas trains with a delay up to 40 minutes are less frequent than predicted 

by the normal distribution. It is however hard to visually explore in a histogram what happens in 

the right tail of the distribution. 
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Figure 1. Arrival deviation time at the destination in 2008 (left) and 2009 (right) 

 

 We therefore proceed to describe the size distribution of delays in terms of percentiles. By 

basing the analysis on percentiles the relative importance of extreme delays and their share of 

total delay minutes in the network can be seen. Even if infrequent, their potential impact could 

necessitate a reallocation of resources from frequent but small-size deviations in order to 

minimize these extreme events. Table 2 shows what share of the total delay minutes within a 

given year can be attributed to a certain percentile and the average delay within each percentile. 

The 10 percent worst delays account for more than 50 percent of total delay minutes for a given 

year.  

 

Table 2. Percentile share in percentage of total delay minutes in 2008 and 2009 

 
 

Total no. of observations Average delay (min) Percent of total delay 

Percentile 2008 2009 2008 2009 2008 2009 

Top 50% 302850 323303 11.56 12.35 91 92 

Top 20% 115555  117352 23.25 26.03 70 71 

Top 10% 56113 56391 36.94 41.13 54 54 

Top 5% 28254 29364 55.07 58.16 41 39 

Top 1% 5573 5660 123.54 117.12 18 15 

 

 

4.1.2 Identification of distribution  

 Since we ruled out the normal distribution in the previous section, we want to explore what 

candidate distribution will fit our data better. Distribution fitting can be an alternative due to 

several reasons: first, the distribution gives a hint on the mechanism behind the causes of delays 

or to put in the other way around, any mechanism explaining delays should lead to similar 
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distributions as the empirical distribution. Related to this is that by means of distribution fitting it 

can be examined whether delays of different sizes are caused by the same mechanism. Second, 

distribution fitting allows us to predict probabilities for very low probability events or for delays. 

Third, examining the distribution helps us find a general pattern that potentially can be applied 

and compared to regional and international data for delays. 

There are different candidate distributions that exhibit thick tails. The lognormal distribution 

is the simplest one to check, since it implies that the natural logarithm of delays is normally 

distributed. Another candidate distribution is the so-called power-law distribution. For a 

continuous variable as train delays, the power-law distribution is defined as follows (Clauset et al., 

2009): 

 

 ( ) ( ) dxcxdxxXxdxxf α−=+<≤= Pr  (1) 

 

Where X is the observed value, f(x) is the density function and c is a normalization constant. 

The normalization constant is needed since the density function diverges as x approaches zero. 

Therefore we must have a lower limit for the power law process. The complementary cumulative 

distribution function is defined as: 

 

 ( ) ( ) ( ) α−∞
==≥=− ∫ 1Pr1 CxdxxfXxxF

x
 (2) 

 

Hence, we have: 

 

 
( )

( )
α−=

−
1

ln

)(1ln

xd

xFd
 (3) 

 

Therefore, we can use the slope in a log-log plot to estimate the scaling parameter α once we 

identified the lower limit. For identification purposes of the lower limit the data is divided into 

different intervals and the lower limit is identified as the interval with the best power law fit. The 

method can be criticized on grounds that the OLS estimation of the slope coefficient for a given 

lower limit does not imply that the estimated distribution parameters do satisfy the properties of 

a proper cumulative distribution function. We therefore use maximum likelihood estimation of 

the power law coefficient and the lower limit simultaneously. Furthermore, we test the power law 

hypothesis against the main alternative distribution that we regard to be the exponential 

distribution, which is defined as: 
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 ( ) ( ) dxedxxXxdxxf xββ −=+<≤= Pr  (4) 

 

 The complementary cumulative distribution function is thus: 

 

 ( ) ( ) ( ) x

x
edxxfXxxF β−∞

==≥=− ∫Pr1  (5) 

 

Whereas we can identify a power-law by a straight line in a double-logarithmic plot, an 

exponential distribution will exhibit a straight line in a semi-logarithmic plot instead: 

 

 
( )

β−=
−

dx

xFd )(1ln
 (6) 

 

There are related distributions as the power law with exponential cutoff and the stretched 

exponential. Hence, it is difficult to definitely rule out the power law or to distinguish it from the 

exponential distribution. The standard way to identify power-law behavior is by spotting a 

straight line if plotting the logarithm of the inverse cumulative distribution against the logarithm 

of size (see Figure 2). We pool all observations in order to detect very large delays. As mentioned 

before, a power law distribution is necessarily bounded by a minimum value and hence applicable 

only to the tail of the distribution. Additionally, empirical distributions often exhibit signs of 

boundary effects so that power laws usually only can be confirmed for certain intervals.  

Based on the method outlined in Clauset et al. (2009) and based on maximum-likelihood 

estimation, different lower boundaries are selected and the power law coefficient is estimated; 

goodness-of-fit tests are used to select the best fitting lower boundary. Figure 2 shows the result 

of fitting the data to the power law distribution. It seems that the power law hypothesis cannot 

be confirmed. For very large delays the power law overestimates the probability for having a 

delay of that magnitude. However, we cannot rule out that the tail is power law distributed with 

an exponential cutoff, that is, a combination of both distributions. One reason for this differing 

behavior for extremely large values is a boundary effect because very large departure delays are 

registered as cancellation of the train trip instead. 

The exponential distribution gives a better fit for the extreme values in the tail (the power 

law coefficient is 2.6606 and for the exponential distribution the coefficient is .0077). The 

goodness-of-fit test confirms the visual inspection so that we conclude that the exponential 

distribution can be used to describe arrival delays of passenger trains in the Swedish rail network. 
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Figure 2. Arrival delays with straight line fit of the distribution tail on log-log scale (top) 

and semi-log scale (bottom) 

 

4.2 Spatial delay distribution 

 By studying the spatial distribution of train delays it can be distinguished where in the system 

time deviations are most common, i.e. where the delays occur. The focus is here not on the 

detailed geographical level, but instead we want to analyze patterns that can be generalized to 

other cases than the Swedish one. Ex ante we expect to the spatial distribution to be dependent 

on traffic flows and the connectivity of stations. First, we explore the link between the number of 

trains arriving at a certain station and the delay minutes recorded at those stations (see Figure 3). 

There is a strong but a not perfect linear relationship between the number of trains and delay 
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size. The strong relationship between trains and delays arises primarily since the probability for 

delay at a station increases with each train arriving since the per train probability for a delay is 

constant all things equal. However, a delayed train at one station can affect many other trains 

arriving in the same station and hence increase delay minutes. This effect will be stronger if the 

capacity near the station is limited and fully used. 

 

 

Figure 3. Scatter plot of number of trains versus arrival delay in 2008 (left) and 2009 

(right) 

 

Next, similar to the analysis with regard to the size distribution, we analyze the distribution 

across stations. The difference here is that the stations are a continuous but a discrete variable. 

Hence, it is more appropriate to examine the rank-size distribution. The ranking is equivalent to 

the complementary cumulative distribution in the sense that the rank minus one is the frequency 

for a station having the same or a larger delay size. For the station with most delay minutes the 

rank is 1 and the frequency is 1 for any other station having the same or more delays. For the 

station with rank 2 the frequency is 2 of stations having the same or more delays and so on. The 

cumulative distribution is proportional to the rank-size distribution since the probability of 

having a station with delays as large as or larger than a certain number is the frequency divided by 

the number of stations we rank. Figure 4 shows the rank-size distribution of stations with regard 

to delays aggregated over both years. 
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Figure 4. Rank-size distribution of delays at stations for both years on log-log scale (left) 

and semi-log scale (right) 

 

 The rank-delay size distribution seems to follow an exponential distribution reasonably well if 

we compare the log-log and semi-log plots with linear line fit. There are different ways to 

describe passenger rail networks in topological terms, but besides the number of trains related to 

every station we can also look at the number of origins that are connected to a certain station. 

Table 3 shows the five stations with the largest cumulative delay. Compared to the average 

number of origins, which is 2 origins, the stations with most delays have between 9 and 19 

origins. The worst station accounts for between 8-9 percent of all delays and in total the top 5 

accounts for 25-29 percent of all delays. Thus, we observe a concentration of delays in certain 

hotspots, showing the vulnerability of the rail network. In 2009 Gävle is the station with most 

delay time, whereas it was not in the top 5 in the year before. Gävle is a bottleneck for Swedish 

trains connecting north Sweden with the rest of the network. Because of harsh winter conditions 

in the beginning of 2009 many trains in northern Sweden faced problems, since the distances are 

large and most of the rails are only single track, thus stopping or delaying other trains if a train 

faces problems. Figure 5 shows the distribution of delays in a map of the rail-network in Sweden. 
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Table 3. Rank-Size distribution of delays in 20 stations for both 2008 and 2009 

2008 

Station Rank 
Total arrival 

delay (hour) 

Percentage share of 

total delay stations 

Cumulative 

(percent) 
Origins 

Stockholm C 1 3853 8 8 16 

Malmö C 2 2381 5 13 11 

Göteborg C 3 2254 5 17 15 

Lund C 4 2097 4 22 18 

Uppsala C 5 1812 4 25 9 

2009 

Station Rank 
Total arrival 

delay (hour) 

Percentage share of 

total delay stations 

Cumulative 

(percent) 
Origins 

Gävle C 1 4932 9 9 10 

Stockholm C 2 3449 6 15 19 

Malmö C 3 3065 5 20 15 

Lund C 4 2747 5 25 19 

Halmstad C 5 2424 4 29 9 
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Figure 5. Total arrival delay per station 
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4.3 Temporal delay distribution 

 In this section we want to explore the distributions of delays considering daily variations. 

Figure 6 shows the result of this daily aggregation as a time series for 2009. The most 

pronounced differences are the large delays in December 2009, a combination of harsh winter 

conditions and high demand due to the Christmas holiday.  

 

 

Figure 6. Total delay per day in the Swedish rail network 2009 

We sum the delays for every day and use the same procedure described above for delays at 

stations, that is, we assign the day with most delay minutes the rank 1 and rank the other days 

accordingly. Figure 7 shows the rank-size distribution of all days in the data set on a log-log scale. 

Interestingly, the tail of the rank-size distribution seems to follow a power-law. This is a 

difference in comparison for delay distributions per train (size distribution) and per station 

(spatial distribution) both apparently following an exponential distribution. Hence, the worst days 

are very different from a normal day and this might indicate that there is a cascading spread of 

delays within the network. We can also calculate the probability for an event (certain total amount 

of delay any given day) to occur in the network. There is a small but positive probability that a 

daily disturbance double the size that occurred during 2008 and 2009 will occur during a certain 

future year. The probability is determined by the slope of the linear fit to the tail of the rank size 

distribution in Figure 7. 
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Figure 7: Rank size distribution of days 

 

 

4.4 Capacity usage and expected delay 

In Section 4.2 we saw a strong but imperfect relationship between the amount of delay and 

the number of trains, that is, more trains means simply more delays. However, as capacity usage 

increases due to the increased number of trains we would expect that average delay per train 

increases since congestion would lead to knock-on effects. Capacity usage differs over time and 

rail demand exhibits periodic cycles within days, weeks and months. In fact, for the years 

examined here, the number of freight trains reduced by 20% in 2009 compared to 2008 due to 

the economic contraction. In a sense, these aforementioned variations allow us to examine the 

link between capacity usage and the expected delay per train. All things equal, we would expect 

that the average delay increases as capacity usage increases.  

First, we examine the within week variation (see Figure 8). The total number of passenger 

trains is constant across weekdays at circa 230 thousands whereas during weekends the number 

falls just below 150 thousands, which corresponds to a decreased capacity usage of about 35 

percent during weekends. Hence, we would expect a significant dip in average delays since 

capacity is freed up during weekends. Whereas there is a considerable dip during Saturdays (19%) 

no such effect can be observed for Sundays.  

In Figure 9 we aggregate the data for months and compare total number of trains and 

average delay per train per month. Again, no clear-cut relationship between the number of trains 

and average delay emerges. The correlation coefficient is -0.26, implying there is a tendency that 

the per train delay is decreasing as capacity usage is increasing. 
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Figure 8: Total number of trains and average delay per weekday 

 

  

Figure 9: Arrival delay and total no. of trains aggregated over months 

 

It could be argued that the weak (and actually negative) link between capacity usage and average 

delay is due to the fact that the traffic is decreasing in off-peak times whereas it is the same 

during peak-times and hence that the missing link is just an illusion. In order to investigate this 

issue we identify peak-times by plotting the total number of trains using the rail network at any 

given hour and the average delay per train (see Figure 10). We can identify two peak-periods: one 

during morning 7-8am and one during afternoon/early evening 4-7pm. Moreover, we can see 

that there is only a weak, if any, relationship between peak-demand and average delay. The 

average delay increases in the late evening hours when the number of passenger trains is 
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decreasing. Because of the low number of trains during the night it is not meaningful to compute 

an average delay and we exclude those hours in Figure 10. The correlation coefficient is -0.56 for 

2008 (-0.52 in 2009); if we exclude the night hours which bias the average delay upward the 

correlation coefficient is -0.03 for 2008 (-0.12 in 2009). Hence, the link between capacity usage 

and expected delay per train is best described as weak, although extreme delays might bias 

upward the average delay estimates. 

 

Figure 10. Number of trains versus average delay per train in 2008 (top) and 2009 

(bottom) 
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5. Implications  

 i) Societal costs of delay: Even though there is a difference between delayed trains and 

delayed passengers, since passenger volumes can differ from train to train, the distribution of 

train delays can give an idea about passengers’ variation in travel time. So, an obvious 

consequence when identifying delayed trains is that it is necessary to weight the train delays with 

the number of affected passengers. Thus, by analyzing delay distributions it may, to some extent, 

be possible to predict delays in the network as well as draw conclusions about how this impacts 

passengers’ travel time variability. 

To be able to weight the delayed trains with the number of delayed travelers and to be able 

to state something about the travelers’ valuation of these delays, one has to make some 

assumptions. First we assume the average number of seats per train to be approximately 200, 

whereas the load factor for the Swedish trains, i.e. the percentage of seats filled, is 54 percent in 

both 2008 and 2009 (SJ, 2010). With more than 700,000 trains running the national rail network 

during 2008 and an average delay per train of 5.4 minutes, the total delay for all trains are more 

than 64,000 hours, revealing that the total delay for all passengers are almost 7 million hours. By 

using a division made by Banverket (Lundin, 2007) we can assume that 48.7 percent of these are 

private regional trips, 37.7 percent are private national trips and 13.6 percent are business trips. 

The Swedish Transport Administration has in their ASEK 5 report (Trafikverket, 2012) 

established time values which form the basis of socioeconomic calculations, where the time value 

indicates how much a traveler is willing to pay to reduce travel time. The recommended time 

values for long-term private regional trains are 71 SEK/hour, for private national trains 98 

SEK/hour and for business trips 331 SEK/hour in 2010 monetary value. Moreover, delays in 

public transport are valued with regard to average delay time, i.e. the average deviation from the 

scheduled travel time. ASEK 5 recommends that this deviation, i.e. the delays, should be valued 

3.5 times the time value. The calculated delay cost for private regional trips is therefore 839 

million SEK, for private national trips 896 million SEK and for business trips 1092 million SEK. 

In total, the societal costs for the delays analyzed in this paper are 2,827 million SEK. With a 

linear valuation of delay time, this implies that the 10% worst delays cost the society more than 

1.4 billion SEK. With a non-linear, increasing valuation the share of total societal costs for the 

very large delays would be larger than their share in total delay minutes, that is, more than 54%. 

ii) Reliability vs vulnerability: Travel time is one of the largest costs associated with 

transportation; hence, reduction of travel time is very important and therefore justifies 

improvements in transportation infrastructure. Naturally, how travel time is valued is a central 

issue when planning transportation projects. The analysis in the preceding section shows 
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however, that focusing on mean travel times and describing variability by standard deviation is 

misleading. Considering the thick tails of the delay distribution it raises the question whether all 

travel time variations have the same value, regardless of size and frequency. With a linear 

valuation of time approach, the value increases proportionally with delays, even when there are 

very large delays. However, up to now there has been limited research on the valuation of very 

extreme delays. Hence, there is no clear relation between train delays and value of time that could 

be used in a satisfactory way over the whole distribution. If we instead consider a non-linear 

valuation of time, long delays might have a higher value or lower value compared to short delays.  

Since we have skewed distributions, and not normal distributions as earlier has been 

assumed, this has implications for how to measure the VTTV. In usual stated preference as well 

as revealed preference studies, where train delays have been assumed to be normally distributed, 

the VTTV has been based on standard deviations. Our results show that the traditional means of 

valuing reliability through standard deviation or average delay is a poor measure of variability. 

Instead the results suggest a better valuation measure should consider the whole delay 

distribution, for example by valuation of percentiles. We have found that the worst 10% of all 

delays account for more than 50% of all delay minutes in Sweden, that is, circa 1.4 billion SEK. 

Thus, vulnerability cannot be disregarded. 

iii) Targeting weak-spots: As outlined in the previous section we do not know exactly the 

societal costs associated with the thick tails of the delay distribution. However, the analysis in this 

study reveals that the few extreme and large delays cannot be neglected, an important implication 

when prioritizing between reliability improvements. Moreover, our results indicate that measures 

aiming at decreases in average delay would not have a major impact on rail network reliability, or 

in  other words, strategies aiming to improve reliability equally over the system would not be 

efficient. Instead measures targeting the identified vulnerabilities in size, space and time are 

expected to be more efficient in reducing travel time variations. One can argue that large delays 

occur where capacity is used the most, because there are many links, nodes and trains that can be 

affected and once affected influence other links, nodes and trains. In other words, the extremely 

unevenly capacity usage that is characteristic to rail networks (and other complex networks) is in 

itself a cause for large delays. Once we account for the number of trains the average delay per 

train (and per train kilometer) is not significantly affected. Hence, large delays are a sign that we 

have large transportation demand and there will be no easy way to prevent delays. There are 

nevertheless some possible policy measures that can be used to target the problem. The reason is 

the revealed extremely uneven distribution of transport demand and delays over time and space. 

These distributions suggest that investment in capacity, reinvestments and ordinary maintenance 
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measures should be spread not uniformly across the rail network but be focused on problematic 

hotspots. Even now investments and maintenance are not carried out evenly but capacity 

investments and reinvestments should probably be more extremely distributed. Measures 

undertaken for improving reliability outside the central nodes are with a high probability without 

any major effect on overall performance of the rail network since they are of minor importance 

of the functioning of the whole network. For this reason, our results provide some (even if 

limited) insights on the impact of measures on performance outcomes and are therefore of some 

value for cost-benefit analysis of measures targeted at improving reliability and increasing 

capacity.  

 iv) Endogenous vs exogenous causes: We find that individual train delays have 

exponentially distributed tails and that the delays over days have power-law distributed tails. This 

difference might be caused by cascading effects as a disturbance is propagated through the 

system. Hence, even if we think and can see in the data that exogenous factors like weather 

conditions matter for the probability and severance of breakdowns, the causes are to some extent 

still endogenous to the rail network and most probably there is some interdependence and 

combinations between various endogenous and exogenous causes. Endogenous in this context 

means that the rail network has a complex structure that is prone to be robust with respect to 

disturbances at most times and places but that at some times and places the network is fragile to 

disturbances, propagating initial small and geographically limited disturbances through 

connecting links, nodes and the rolling stock itself to larger and more widespread breakdowns in 

the transport network.  

 v) Predictable vs unpredictable delays: We have to acknowledge that many delays are 

unpredictable. Our data analysis reveals that the delays that matter most have extremely low 

probability. However, we can in predict something, namely, the probability for an event of a 

given seize. For example, we can predict that a major breakdown will occur at least one time next 

year, however, we still do not know where and when.  If we could predict where and when, they 

would not occur. However, based on our analysis of delay distributions at stations we can say that 

measures undertaken to reduce the importance of central nodes as stated above (regardless 

whether it is a steering computer or a marshaling yard) would milder the consequences of 

disturbances. Also keeping a network of express-busses as backup could be a way to milder the 

consequences of the very large delays. 
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6. Conclusions  

 To the best of our knowledge this is the first study in its kind related to passenger 

transportation on rail. The analysis of delay distribution facilitates the selection of appropriate 

methods for valuation of rail reliability and thus for cost-benefit analysis of rail investments and 

other measurements. More specific, our analysis suggests that standard deviation is not an 

appropriate measure of reliability risk. It seems that very few extremely large delays matter for the 

total amount of delay and not the many small delays. However, only a sound valuation method 

can answer the question whether society would benefit from reducing the number of delays in 

general or from preventing the extremely large delays. 

In order to know whether it is more important to target the many small or the few very large 

delays, we suggest more research on how many passengers are affected and how they value 

different delay sizes. Up to now, there is no research about neither societal nor individual 

willingness to pay for avoiding extreme delays. Moreover, we would expect that the network 

structure causes many extreme delays so that an analysis of network topology might be a fruitful 

avenue of research. A better network organization, for example by decentralizing steering, 

backup capacity, extreme focus on hubs with regard to maintenance and coupling the express bus 

network to the train network, might reduce the vulnerability of the rail network. 
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