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Abstract 

One cornerstone of EU’s railway policy is that track user charges should be based on marginal 

costs for infrastructure use. This paper updates knowledge about the marginal cost of 

maintaining Sweden’s railway network. Using an extended panel dataset, now comprising 16 

years, we corroborate previous results using a static model framework. However, the results 

from the dynamic model show that an increase in maintenance cost during one year increases 

costs in the next year, which is contrasting previous estimates on a shorter panel dataset. We 

conclude that more data made a difference in a dynamic setting, but the estimated cost 

elasticities are rather robust in a European context. 
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1. Introduction 

The way in which railway infrastructure maintenance is affected by variations in train traffic 

comprises one component of the social marginal costs for using railways. The policy 

relevance of this relationship was formally established after the vertical separation of 

infrastructure management and train operations introduced by the European Union in 1991 

(Dir. 91/440). This directive required the introduction of track access charges. The charging 

principles of infrastructure use was further specified in 2001, when Dir. 2001/14 established 

that track access charges should be set according to the direct cost of running a vehicle on the 

tracks. This means that train operators (inter alia) should be charged for the wear and tear 

traffic inflicts on the infrastructure.  

The significance of marginal cost pricing is one of the pillars of a policy for using 

societies’ resources in an efficient way. The level of marginal cost of track use at large, and of 

wear and tear in particular, is therefore highly relevant both from a theoretical perspective and 

as a platform for EU’s infrastructure policy, triggering several research papers referenced 

below. Against this background, the purpose of this paper is to present new marginal cost 

estimates for rail infrastructure maintenance in Sweden, using data that covers a much longer 

period of time than the existing literature. For the first time in this literature, our data set also 

comprises factor prices. The extended dataset has motivated the title of the paper since it is 

relevant to consider whether better data in general and longer time series in particular makes a 

difference to conclusions.  

Access to several years of information furthermore makes it possible to assess any 

dynamic properties of track maintenance costs. A complementary purpose of the paper is 

therefore to assess whether and how spending on maintenance in one year affect costs in 

subsequent years. The possibility of dynamic interactions is still within the short run marginal 
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cost paradigm, since it would only mean that the consequences of an activity – of traffic – one 

year has implications also for maintenance over a longer period. 

The long time period also makes it possible to consider the possible consequences for 

marginal cost estimates of external events in the industry. The maintenance of Sweden’s 

railways has gone through a comprehensive organizational reform with the introduction of 

competitive tendering in year 2002. The transfer to competition was gradual, but the entire 

network had been tendered at least once as of 2014. Odolinski and Smith (2016) show that 

competitive tendering reduced maintenance costs with 11 per cent. Thus the marginal cost 

may well have been affected by the reform. 

Previous research has used different approaches for estimating the cost incurred by 

running one extra vehicle or vehicle ton on the tracks. There are examples of so-called 

bottom-up approaches that use engineering models to estimate track damage caused by traffic 

(see Booz Allen Hamilton 2005 and Öberg et al. 2007). Starting with Johansson and Nilsson 

(2004), previous studies have, however, mainly used econometric techniques to estimate the 

relationship between costs and traffic; this is referred to as a top-down approach. This line of 

research includes a derivation of the cost elasticity with respect to traffic, and calculation of 

the average maintenance cost. The marginal cost is the product of these two components.  

Most of the top-down approaches make use of a double log functional form, either a 

full translog model or quadratic and cubic terms for the output variables. Link et al. (2008) 

report cost elasticities in the interval 0.13-0.38, which we take as our benchmark or state-of-

the-art opinion of the research community. 

Table 1 lists some results of previous studies on Swedish data which is the most direct 

benchmark for our analysis. It is obvious that these elasticity values are within the overall 

range of cited observations for Europe.  



4 
 

Estimating a dynamic model in order to analyze rail infrastructure costs is rare, 

Andersson (2008) being one notable exception. He uses a difference generalized method of 

moments (GMM) estimator on a four-year panel dataset. Our paper adds to this study and the 

literature on rail infrastructure costs in general, by considering the dynamic aspect of 

maintenance on a much longer panel. 

 

Table 1 - Previous estimates on the marginal maintenance cost of rail infrastructure usage in Sweden 

 Model Output variable Cost 

elasticity 

MC* MC* 2014 

Prices** 

Johansson and Nilsson 

(2004) 

Pooled OLS Gross ton 0.17 0.0012 0.0014 

Andersson (2006) Pooled OLS Gross ton 0.21 0.0031 0.0036 

Andersson (2007) Fixed Effects Gross ton 0.27 0.0073 0.0084 

Andersson (2008) Fixed Effects Gross ton 0.26 0.0070 0.0080 

 Difference 

GMM 

Gross ton 0.34
S
 0.22

L
 0.0092

S
0.0060

L
 0.0106

S
 

0.0069
L
 

Andersson (2011) Box-Cox Freight gross 

ton 

0.05 0.0014 0.0016 

  Passenger gross 

ton 

0.18 0.0108 0.0124 

*Marginal Cost, **Inflation adjusted using the Swedish consumer price index, S=short-run, L=long-run 

 

The focus in this paper is on maintenance costs – that is, spending on day to day activities. 

The relevance of renewal costs for appropriate charging is addressed in Andersson et al. 

(2012) and Andersson and Björklund (2012). Since a reduction in maintenance can front-load 

renewals and/or increase the level of renewals and vice versa, there is a possible 

interdependence between these cost categories. These links are beyond the scope of this 

paper. 

The outline of the rest of the paper is as follows. The methodology Section (2) is 

followed by a description of the available dataset in Section 3. We present the results in 

Section 4. Section 5 comprises a discussion and conclusion of the results. 
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2. Methodology 

Several intricate challenges have to be addressed in order to formulate a model that can be 

expected to deliver estimates of marginal costs. Section 2.1 addresses the econometric 

approach and appropriate transformation of variables. The static model to be estimated is 

presented in Section 2.2 while section 2.3 considers the possibility that maintenance activities 

in year 𝑡 depend on costs in 𝑡 − 1. 

 

2.1 Econometric approach 

From an engineering perspective, the weight of the rolling stock is a main driver of the rail 

infrastructure wear and tear. Gross ton-km (GTKM, i.e. an additional ton using the tracks) has 

therefore become the preferred charging unit in Europe and is the output measure used in 

marginal cost calculations. When the impact of an additional ton-km on maintenance costs is 

estimated, there is reason to separate scale (track length) and density (tons) effects, as these 

dimensions of track use may have different effects. In particular, scale effects are related to 

long-run costs. Similar to the literature in this field, we therefore use the cost elasticity with 

respect to gross tons (GT) and multiply with the average cost (
𝐶

𝐺𝑇𝐾𝑀
) to derive the marginal 

cost per ton-km: 

 

𝑀𝐶 =
𝜕𝐶

𝜕𝐺𝑇𝐾𝑀
=

𝐺𝑇𝐾𝑀

𝐶

𝜕𝐶

𝜕𝐺𝑇𝐾𝑀

𝐶

𝐺𝑇𝐾𝑀
=

𝜕𝑙𝑛𝐶

𝜕𝑙𝑛𝐺𝑇

𝐶

𝐺𝑇𝐾𝑀
,                   (1) 

 

where 𝐶 is maintenance costs.
1
 To derive the cost elasticity with respect to gross tons, we use 

a cost function given by equation (2) where there are 𝑖 =  1, 2, … , 𝑁 track sections and 

𝑡 =  1, 2, … , 𝑇 years of observations. 

                                                 
1
 In equation (1), the fact that 

𝜕𝐶

𝜕𝐺𝑇𝐾𝑀
=

𝜕𝐶

𝜕𝐺𝑇

1

𝐾𝑀
 implies that an extra ton that runs on a track section will not 

change the length of that section. An interaction term between GT and track length can also be added in the 

model estimation to allow for the cost elasticity with respect to GT to vary with track length. 
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𝐶𝑖𝑡 = 𝑓(𝑷𝑖𝑡, 𝑸𝑖𝑡, 𝑭𝑖𝑡, 𝒁𝑖𝑡),                     (2) 

 

𝑷𝑖𝑡 are input prices, 𝑸𝑖𝑡 the volume of output (gross ton) and 𝑭𝑖𝑡 is a vector of network 

characteristics such as track length and rail age. 𝒁𝑖𝑡 is a vector of dummy variables which 

includes year dummies and variables indicating whether or not a track section belongs to a 

contract area tendered in competition. Since the introduction of competitive tendering in an 

area rarely starts at the beginning of a calendar year, we include a dummy variable for years 

when there is a mix between tendered and not tendered in competition. See Odolinski and 

Smith (2016) for more details. 

A common functional form in the literature on rail infrastructure costs is the double-

log specification. Indeed, agents in maintenance production are more likely to have the same 

reactions to relative changes than to changes in absolute levels, and a logarithmic 

transformation of the variables can reduce skewness and heteroscedasticity (Heij et al. 2004). 

Which transformation that is most appropriate can however be tested empirically using the 

model proposed by Box and Cox (1964) which does not impose a specific transformation of 

the data. Instead, the functional form is tested. We estimate the Box Cox model and the results 

confirm that a logarithmic transformation is preferred.
2
 

 

2.2. Translog model 

We start with the flexible translog cost function which, for example, allows economies of 

scale to vary with different output levels and the production structure can be non-homothetic 

(input demands can vary for different output levels). See for example Christensen and Greene 

(1976). The translog functional form is expressed as: 

 

                                                 
2
 More specifically, the estimates of the transformation parameters show that the logarithmic transformation is 

preferred when rounding the parameters to the closest functional form, as suggested by Sheather (2009). 
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𝑙𝑛𝐶𝑖𝑡 = 𝛼 +  ∑ 𝛽𝑟𝑙𝑛𝑃𝑟𝑖𝑡 +
1

2
∑ ∑ 𝛽𝑟𝑠

𝑅

𝑠=𝑟

𝑙𝑛𝑃𝑟𝑖𝑡𝑙𝑛𝑃𝑠𝑖𝑡 +

𝑅

𝑟=1

𝑅

𝑟=1

∑ 𝛽𝑚𝑙𝑛𝑄𝑚𝑖𝑡

𝑀

𝑚=1

+
1

2
∑ ∑ 𝛽𝑚𝑛

𝑀

𝑛=1

𝑙𝑛𝑄𝑚𝑖𝑡𝑙𝑛𝑄𝑛𝑖𝑡 +

𝑀

𝑚=1

 

∑ 𝛽𝑘𝑙𝑛𝐹𝑘𝑖𝑡 +  
1

2
∑ ∑ 𝛽𝑘𝑙𝑙𝑛𝐹𝑘𝑖𝑡𝑙𝑛𝐹𝑙𝑖𝑡 + ∑ ∑ 𝛽𝑟𝑚𝑙𝑛𝑃𝑟𝑖𝑡𝑙𝑛𝑄𝑚𝑖𝑡

𝑀

𝑚=1

+ 

𝑅

𝑟=1

𝐾

𝑙=1

𝐾

𝑘=1

𝐾

𝑘=1

 

∑ ∑ 𝛽𝑟𝑘𝑙𝑛𝑃𝑟𝑖𝑡𝑙𝑛𝐹𝑘𝑖𝑡

𝐾

𝑘=1

+ 

𝑅

𝑟=1

∑ ∑ 𝛽𝑘𝑚𝑙𝑛𝐹𝑘𝑖𝑡𝑙𝑛𝑄𝑚𝑖𝑡

𝑀

𝑚=1

+  ∑ 𝜗𝑑𝑍𝑑𝑖𝑡 +

𝐷

𝑑=1

 𝜇𝑖 + 𝑣𝑖𝑡

𝐾

𝑘=1

 

(3) 

 

Equation (3) comprises R inputs, M outputs, K network characteristics, and D dummy 

variables.  𝜷 and 𝝑 are vector of parameters to be estimated, and the symmetry restrictions 

𝛽𝑚𝑛 = 𝛽𝑛𝑚, 𝛽𝑘𝑙 = 𝛽𝑙𝑘, 𝛽𝑟𝑚 = 𝛽𝑚𝑟 , 𝛽𝑟𝑘 = 𝛽𝑘𝑟 and  𝛽𝑘𝑚 = 𝛽𝑚𝑘  are used. The Cobb-Douglas 

constraint is 𝛽𝑟𝑠 = 𝛽𝑚𝑛 =   𝛽𝑘𝑙  =   𝛽𝑟𝑚 = 𝛽𝑟𝑘  = 𝛽𝑘𝑚  =  0, which we examine using an F-

test. Hence, the Cobb-Douglas model implies the homotheticity (𝛽𝑟𝑚 = 0) and homogeneity 

(𝛽𝑟𝑚 = 𝛽𝑚𝑛 = 0) restrictions. A cubic term for output is also considered in the model 

estimation so that we allow for turning points in the cost elasticity with respect to output.  

 𝑣𝑖𝑡 is the error term in our model and 𝛼 is a scalar. 𝜇𝑖 is the impact of generic features 

of each track section which may contain features that predict 𝑙𝑛𝐶𝑖𝑡 but are not captured by the 

explanatory variables. This value is the same for each track unit over time. Fixed effects and 

random effects are two approaches often used to model this variation. A crucial assumption in 

the random effects approach is that the unobserved individual effects 𝜇𝑖 are uncorrelated with 

the explanatory variables. Otherwise, the model will produce biased estimates of 𝜷 and 𝝑. We 

use the Hausman test (1978) for the choice between the random and fixed effects models. 

In the baseline formulation of the model, only total annual gross tons is used to 

represent output. We also consider a distinction between freight and passenger gross tons as 

the characteristics of these vehicle types may cause different levels of wear and tear. 
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Several network characteristics are related to the size of each track section, and it is 

straightforward to assume that costs increase with track length, length of switches and length 

of tunnels and bridges. The older the tracks, the more likely it is that maintenance costs are 

higher. The expectation goes in the opposite direction for the ratio between track and route 

length. For a section with single tracks the ratio is unity. Adding one place for meetings and 

over-taking increases the numerator and for a double track section the ratio is 2. The a priori 

expectation is that more double tracking will make it easier to maintain the tracks with less 

work during night hours, that is, costs are lower. 

 

2.3 Dynamic model 

Some maintenance activities are not implemented every year. The level of tamping, rail 

grinding etc. during one year may therefore affect maintenance costs required the next. 

Hence, costs may fluctuate even if traffic and infrastructure characteristics do not change. 

Moreover, it may be difficult for the infrastructure manager (subsequently the IM) to give an 

immediate and appropriate response to a sudden and large change in traffic or in other cost 

drivers. To address the possibility of the intertemporal effect(s), a dynamic model with a 

lagged dependent variable as an explanatory variable will be tested. Both the Arellano and 

Bond (1991) and the Arellano-Bover/Blundell-Bond (1995, 1998) estimators are used. These 

estimators essentially use first differencing and lagged instruments to deal with the 

unobserved individual effect and autocorrelation. 

For a Cobb-Douglas functional form the model is expressed as: 

 

𝑙𝑛𝐶𝑖𝑡 = 𝛽0𝑙𝑛𝐶𝑖𝑡−1 + ∑ 𝛽𝑟𝑙𝑛𝑃𝑟

𝑅

𝑟=1
+ ∑ 𝛽𝑚𝑙𝑛𝑄𝑚𝑖𝑡

𝑀

𝑚=1
+ ∑ 𝛽𝑘𝑙𝑛𝐹𝑘𝑖𝑡

𝐾

𝑘=1

+ ∑ 𝜗𝑑𝑍𝑑𝑖𝑡

𝐷

𝑑=1
+ 𝜇𝑖 + 𝑣𝑖𝑡 

(4) 
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Lagged maintenance costs 𝑙𝑛𝐶𝑖𝑡−1 are correlated with the individual effects 𝜇𝑖, and estimating 

this model with OLS would therefore produce biased estimates. This is handled taking first 

differences of (4), giving equation (5). 

 

𝑙𝑛𝐶𝑖𝑡 − 𝑙𝑛𝐶𝑖𝑡−1 = 𝛽0(𝑙𝑛𝐶𝑖𝑡−1 − 𝑙𝑛𝐶𝑖𝑡−2) 

+ ∑ 𝛽𝑟(𝑙𝑛𝑃𝑟𝑖𝑡 − 𝑙𝑛𝑃𝑟𝑖𝑡−1)
𝑅

𝑟=1
+ ∑ 𝛽𝑚(𝑙𝑛𝑄𝑚𝑖𝑡 − 𝑙𝑛𝑄𝑚𝑖𝑡−1)

𝑀

𝑚=1
 

+ ∑ 𝛽𝑘(𝑙𝑛𝐹𝑘𝑖𝑡 − 𝑙𝑛𝐹𝑘𝑖𝑡−1) +
𝐾

𝑘=1
∑ 𝜗𝑑(𝑍𝑑𝑖𝑡 − 𝑍𝑑𝑖𝑡−1)

𝐷

𝑑=1
 

+(𝜇𝑖 − 𝜇𝑖) + (𝑣𝑖𝑡 − 𝑣𝑖𝑡−1) 

(5) 

 

This makes the individual effect 𝜇𝑖 disappear.  However,  𝑙𝑛𝐶𝑖𝑡−1 and the lagged independent 

variables are correlated with 𝑣𝑖𝑡−1. To deal with this endogeneity it is necessary to use 

instruments. We first consider 𝑙𝑛𝐶𝑖𝑡−2 as an instrument for (𝑙𝑛𝐶𝑖𝑡−1 − 𝑙𝑛𝐶𝑖𝑡−2) = ∆𝑙𝑛𝐶𝑖𝑡−1. 

This instrument is not correlated with 𝑣𝑖𝑡−1 under the assumption of no serial correlation in 

the error terms. Holtz-Ekin et al. (1988) show that further lags can be used as additional 

instruments without reducing sample length. To model the differenced error terms (𝑣𝑖𝑡 −

𝑣𝑖𝑡−1), Arellano and Bond (1991) propose a generalized method of moment (GMM) 

estimator, estimating the covariance matrix of the differenced error terms in two steps. 

As T increases, the number of instruments also increases. For example, with T=3 

(minimum number of time periods needed), one instrument, 𝑙𝑛𝐶𝑖1, is used for ∆𝑙𝑛𝐶𝑖2. With 

T=4, both 𝑙𝑛𝐶𝑖1 and 𝑙𝑛𝐶𝑖2 can be used as instruments for ∆𝑙𝑛𝐶𝑖3. Since the present dataset 

comprises 16 periods, we need to consider a restriction of the number of instruments used 

because too many instruments can over-fit the endogenous variables (see Roodman 2009a). If 

independent variables are predetermined (𝐸(𝑋𝑖𝑠𝑣𝑖𝑡) ≠ 0 for 𝑠 < 𝑡 and zero otherwise), it is 

feasible to include lagged instruments for these as well, using the same approach as for the 

lagged dependent variable. 
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The approach by Blundell and Bond (1998), which is a development of the Arellano 

and Bover (1995) estimation technique, is called system GMM and does not employ first 

differencing of the independent variables to deal with the fixed individual effects. Instead, 

differences of the lagged dependent variable are used as an instrument. In our case 𝑙𝑛𝐶𝑖𝑡−1 is 

instrumented with ∆𝑙𝑛𝐶𝑖𝑡−1 and assuming that 𝐸[∆𝑙𝑛𝐶𝑖𝑡−1(𝜇𝑖 + 𝑣𝑖𝑡)] = 0, this must also hold 

for any other instrumenting variables. 

A lagged difference of the dependent variable as an instrument is appropriate when 

the instrumented variable is close to a random walk. Roodman explains this neatly (2009b, p. 

114): “For random walk-like variables, past changes may indeed be more predictive of current 

levels than past levels are of current changes…”. We expect this to be the case for 

maintenance costs. The reason is that, for example, a large change in maintenance costs 

indicates that something is going on, and contains information about maintenance costs in the 

following year (it will be either low or high due to the change). Moreover, a very small 

change is more likely to imply that business is as usual. The past level, on the other hand, 

does not contain much information on how maintenance costs will change; it can be either 

business as usual or a large change in costs. In other words, based on this intuition, we expect 

the system GMM to perform better - using past changes as instruments for current levels - 

than the difference GMM, which uses past levels as instruments for current changes. 

Alonso-Borrego and Arellano (1999) perform simulations showing that the GMM 

estimator based on first differences (the Arellano and Bond 1991 model) have finite sample 

bias. Moreover, Blundell and Bond (1998) compare the first difference GMM estimator with 

the system GMM using simulations. They find that the first difference GMM estimator 

produces imprecise and biased estimates (with persistent series and short sample periods) and 

estimating the system GMM as an alternative can lead to substantial efficiency gains. 
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Against this background, we estimate a Cobb-Douglas model with 𝑙𝑛𝐶𝑖𝑡−1 as an 

explanatory variable using the approach by Arellano-Bover/Blundell-Bond (1995, 1998) 

system GMM as well as the Arellano and Bond (1991) model.
3
 Traffic is assumed to be 

predetermined (not strictly exogenous) and is instrumented with the same approach as the 

lagged dependent variable. This type of instruments is also used for a lagged track quality 

variable. Track geometry requirements are linked to this track quality class, where high speed 

lines have stricter requirements than low speed lines. We expect that a change in this 

particular variable in one year may have a nontrivial effect on maintenance costs in the 

following year. 

 

3. Data 

The publicly owned Swedish railway network is divided into track sections, administered by 

five regional units and a central planning unit within the Swedish Transport Administration 

(the IM). All in all, about 250 track sections are observed for the 1999 to 2014 period. A 

comprehensive matrix would therefore comprise (250 x 16 years =) 4000 observations. 

However, marshalling yards have been omitted since the cost structure at these places can be 

expected to differ from track sections at large. Neither is privately owned sections, heritage 

railways, nor track sections that are closed for traffic, included in the dataset. Also due to 

missing information and changes in the number of sections on the network, 2819 observations 

are available for analysis and the panel is thus unbalanced. 

In the same way as in all other Swedish rail cost studies, most of the information 

derives from the systems held by the IM that reports on the technical aspects about the 

network and about costs. The sections of today have a long history and are not defined based 

                                                 
3
 The comprehensive Translog model turned out to be sensitive to the number of instruments included. 

Moreover, some of the estimated coefficients for the network characteristics had reversed signs compared to the 

static model. 
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on a specific set of criteria. As a result, the structure of the sections varies greatly. For 

example, section (route) length ranges from 1.8 to 219.4 kilometres, and the average age of 

sections ranges from one to 84 years; see Table 2. 

 

Table 2 - Descriptive statistics for track section for the 1999-2014 period (2819 obs.) 

Variable Median Mean Std. Dev. Min  Max 

Maintenance cost, million SEK* 8.37 12.57 15.32 0.01 277.52 

Maintenance cost excl. snow removal, million SEK* 7.75 11.62 13.98 0.01 209.22 

Hourly wage, SEK* 155.80 156.63 11.90 128.87 187.44 

Iron and Steel, price index 112.90 100.47 31.22 52.30 140.90 

Total ton density** 4.66 7.83 8.58 0.00 65.85 

Passenger train ton density** 1.11 3.03 5.67 0.00 56.55 

Freight train ton density** 2.36 4.59 5.41 0.00 39.72 

Track length, km 56.32 68.99 50.950 4.20 290.65 

Route length, km 39.47 53.04 41.26 1.79 219.39 

Ratio track- and route length 1.14 1.61 1.05 1.00 8.08 

Average rail age 19.17 20.53 10.38 1.00 84.01 

Average quality class*** 3.25 3.18 1.19 1.00 6.00 

Switch length, km 1.32 1.75 1.70 0.06 14.40 

Average age of switches, years 20.00 20.92 9.35 1.00 55.25 

Length of bridges and tunnels, km 0.36 1.19 2.85 0.00 23.21 

Max. axle load allowed 22.50 23.15 1.83 16.00 30.00 

Snow mm precipitation when temp. <0 C
◦
 97.94 111.77 63.79 2.14 343.76 

Dummy when tendered in competition 0 0.47 0.50 0 1 

Dummy when mix between tend. and not tend. 0 0.06 0.24 0 1 

* Costs have been deflated to the 2014 price level using the consumer price index (CPI), ** Million ton-

km/route-km, ***Track quality class ranges from 0-5 (from low to high line speed), but 1 has been added to 

avoid observations with value 0. 

 

A price index for iron and steel was obtained from Statistics Sweden, and is used as an input 

price variable. This variable only varies over time. Another input price variable is the gross 

hourly wage for workers within the occupational category ‘building frame and related trade 



13 
 

workers’, which was obtained from the Swedish Mediation Office (via Statistics Sweden), 

and varies between eight different regions as well as over time.4 

Previous analyses made a distinction between operations, primarily costs for snow 

clearance, and other, around-the-year maintenance. As of 2007 the IM does not make this 

separation and the (previously) separate observations of the two items have been merged for 

previous years. Maintenance costs therefore comprise all activities included in tendered 

maintenance contracts, including costs for snow removal. To control for weather variations 

between different track sections, information from the Swedish Metrological and 

Hydrological Institute (SMHI) has been used to create a variable for the amount of snowfall 

during a year and each track section, using millimetre of precipitation each day when the daily 

mean temperature is below zero degrees Celsius. 

 

4. Results 

Two models are estimated and the output tables are presented in the appendix together with 

variable definitions. The results of Model 1, a static panel data model, are presented in Section 

4.1. Here we use heteroscedastic-robust standard errors that are adjusted for correlation within 

track sections. However, there may also be correlation between track sections. The year 

dummies in our model will pick up this cross-sectional dependence to the extent that it is 

similar for every pair of track sections. We test if correlation between track sections is still 

present in our model using Pesaran’s (2004) test, which indicates that we need to address this 

type of correlation (see end of Table 8 in appendix for the test results). Our fixed effects 

model is therefore estimated with Driscoll and Kraay (1998) standard errors that are robust to 

                                                 
4
 Unfortunately, the occupational categories changed in 2014. We therefore assume that workers in our 

occupational category have the same percentage change in wages between 2013 and 2014 as workers in the 

construction industry, for which we have data. 
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cross-sectional and temporal dependence.
5
 Moreover, the Hausman also indicated that the 

fixed effects estimator is preferred to the random effects estimator. 

In Section 4.2 we present the results from Model 2 which considers the dynamic 

dimension of maintenance costs, estimating how past levels of maintenance affect current 

levels. In addition to the rationale for including lagged maintenance costs as an explanatory 

variable (provided in section 2.3), we test the presence of serial correlation when this variable 

is dropped from equation (4). The Wooldridge (2002) test for serial correlation in panel data, 

which takes within-panel (track section) correlation into account, shows that we can reject the 

null hypothesis of no first order autocorrelation (F(1, 196)=12.56, prob>F=0.0005), indicating 

that there is indeed a dynamic process to be captured. 

Before elaborating on the parameter estimates, we note that 17 outliers were detected. 

The average cost (maintenance cost per ton-km) for 14 of these observations were 200 times 

larger than the sample median, while three outliers had extremely low average costs with a 

ratio over 50 between the sample median and their respective average cost. These 17 outliers 

are excluded from the estimations.  All estimations are carried out using Stata 12 

(StataCorp.2011). 

 

4.1 Estimation results: static panel data model 

We start with the full translog functional form. Based on F-tests of linear restrictions on the 

fixed effects model results, with two exceptions, the full translog model is retained; both the 

parameter for wages and for structures (tunnels and bridges) are dropped due to their negative 

parameter estimates. Moreover, the input price for iron and steel only varies over time and is 

therefore collinear with one of the dummy variables. Hence, we only include interactions with 

this input price variable in the estimations. We also considered dividing maintenance cost and 

                                                 
5
 These standard errors rely on asymptotic theory, which we consider appropriate for our panel data that stretches 

over 16 years. 
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the input price for iron and steel with wages in order to impose linear homogeneity in input 

prices. However, we prefer the non-normalized formulation of our model as specified in eq. 3, 

in view of the negative estimate for wages in the model estimations which indicates that this 

input price variable may be a poor proxy for actual wages. Moreover, we are able to test if the 

sum of the input price variable’s interaction terms is zero, which is required for linear 

homogeneity in input prices.
6
 We cannot reject this restriction at the 5 per cent level of 

significance (F(1, 202)=2.71, Prob>0.0983). 

Estimation results from a translog model with passenger and freight gross ton as 

separate outputs did not result in a significant difference in cost elasticity between these 

outputs. We therefore present the results with total gross ton as output, meaning that it is 

impossible in our data to detect any – ceteris paribus – difference in wear and tear from a 

passenger and a freight train. 

Before elaborating on the elasticity with respect to traffic, it is reason to comment on 

the other parameter estimates. The year dummy coefficients for 2002-2014 are significantly 

different from 1999, which is the baseline year. Moreover, tests of differences between the 

year dummies show that years 1999-2001 have the lowest cost level, while the years 2011-

2014 have a significantly higher cost level than other years.  These changes may be due to 

general effects over the rail network, such as an increase in unit maintenance costs and/or a 

change in the allocation of budget resources for maintenance purposes. 

In line with the findings in Odolinski and Smith (2016), the gradual transfer from 

using in-house resources to competitive procurement has reduced maintenance costs. The 

parameter estimate for tendering in competition (Ctend) is -0.1060 (p-value 0.005), which 

                                                 
6
 Other conditions required for linear homogeneity in input prices are that the sum of their second order terms is 

zero, as well as the sum of their first order coefficients. 
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translates to a 10.1 per cent
7
 reduction in maintenance costs as a result of competitive 

tendering. 

The first order coefficients (evaluated at the sample median) for track length (Track_l) 

and average rail age (Rail_age) are significant and have the expected signs. The estimate for 

maximum axle load allowed (Max.axle_load) is positive, which indicates that these tracks 

require more maintenance due to the heavy axle loads they experience, even though they are 

designed for this type of traffic. We also note that the first order coefficients for switch length 

(Switch_tl) and snowfall (Snowmm) have the expected signs, but are only nearly significant 

at the 10 per cent level (p-values 0.130 and 0.136, respectively). 

The focus of the inquiry is on the impact of traffic on costs. The first order coefficient 

for traffic (Tgtden), evaluated at the sample median, is 0.1437 and statistically significant (p-

value=0.000). However, we have a squared and cubic term for traffic as well as interaction 

terms between traffic, input prices, network characteristics and the weather variable (snow). 

Hence, in order to get an estimate of the cost elasticity with respect to gross ton at the 

observed levels of the variables in the interaction terms, it is necessary to use equation (6) 

where �̂�1 is the first order coefficient for gross ton and �̂�2, �̂�3, … , �̂�12 are the coefficients for 

the interaction variables. As a result, the static cost elasticity at the sample mean is 0.1729 

with a standard error at 0.0421 (p-value=0.000). 

 

𝛾𝑖𝑡 = �̂�1 + 2 ∙ �̂�2𝑙𝑛𝑇𝑔𝑡𝑑𝑒𝑛𝑖𝑡 + 3 ∙ �̂�3(𝑙𝑛𝑇𝑔𝑡𝑑𝑒𝑛)𝑖𝑡
2 + �̂�4𝑙𝑛𝐼𝑟𝑜𝑛𝑖𝑡 + �̂�5𝑙𝑛𝑇𝑟𝑎𝑐𝑘_𝑙𝑖𝑡 +

�̂�6𝑙𝑛𝑅𝑎𝑡𝑖𝑜_𝑡𝑙𝑟𝑜𝑖𝑡 + �̂�7𝑙𝑛𝑅𝑎𝑖𝑙_𝑎𝑔𝑒𝑖𝑡 + �̂�8𝑙𝑛𝑄𝑢𝑎𝑙_𝑎𝑣𝑒𝑖𝑡 + �̂�9𝑙𝑛𝑆𝑤𝑖𝑡𝑐ℎ_𝑡𝑙𝑖𝑡 +

�̂�10𝑙𝑛𝑆𝑤𝑖𝑡𝑐ℎ_𝑎𝑔𝑒𝑖𝑡 + �̂�11𝑙𝑛𝑀𝑎𝑥. 𝑎𝑥𝑙𝑒_𝑙𝑜𝑎𝑑𝑖𝑡 + �̂�12𝑙𝑛𝑆𝑛𝑜𝑤𝑖𝑡,   (6) 

 

To calculate the marginal cost, we use a fitted cost, �̂�𝑖𝑡, as specified in equation (7), which 

derives from the double-log specification of our model that assumes normally distributed 

residuals (see Munduch et al. 2002 and Wheat and Smith 2008). 

                                                 
7
 exp(-0.1060)-1 = -0.1006 
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�̂�𝑖𝑡 = exp (ln(𝐶𝑖𝑡) − 𝑣𝑖𝑡 + 0.5�̂�2)       (7) 

 

From a charging perspective, a distance unit is required for the marginal cost estimate, where 

ton kilometre is the preferred charging unit in Europe. The marginal cost per gross ton 

kilometre is calculated by multiplying the average cost by the cost elasticity from eq. (6). In 

eq. (8), the predicted average cost is used. This is the cost from eq. (7) divided by gross ton-

kilometres (eq. 9): 

 

𝑀𝐶𝑖𝑡 = 𝐴�̂�𝑖𝑡 ∙ 𝛾𝑖𝑡                              (8) 

 

𝐴�̂�𝑖𝑡 = �̂�𝑖𝑡 𝐺𝑇𝐾𝑀𝑖𝑡⁄                                (9) 

 

Similar to previous studies a weighted marginal cost is calculated for the entire railway 

network included in this study. In this calculation, the traffic share on each track section is 

used in order to derive a marginal cost for all track sections that generates the same income 

for the infrastructure manager as if each track section’s marginal cost would be used: 

 

𝑀𝐶𝑖𝑡
𝑊 = 𝑀𝐶𝑖𝑡 ∙

𝐺𝑇𝐾𝑀𝑖𝑡

(∑ 𝐺𝑇𝐾𝑀𝑖𝑡)𝑖𝑡 /𝑁
         (10) 

 

The average and marginal costs are summarized in Table 3.
8
 The lower value of costs 

deriving from the weighting procedure indicates that track sections with relatively more 

traffic have lower marginal costs than average. 

 

  

                                                 
8
 Note that the mean value of the weighted marginal cost in equation (10) is equal to the weighted sum of 

marginal costs (𝑀𝐶𝑊 = ∑ 𝑀𝐶𝑖𝑡 ∙
𝐺𝑇𝐾𝑀𝑖𝑡

(∑ 𝐺𝑇𝐾𝑀𝑖𝑡)𝑖𝑡
), which is the expression used in for example Munduch et al. (2002) 

and Andersson (2008). 
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Table 3 - Estimated costs in SEK, 2014 prices (2802 obs.), Model 1 

 Mean Std. Err. [95 % Conf. Interval] 

Average cost 0.3163 0.0329 0.2517 0.3808 

Marginal cost 0.1192 0.0198 0.0804 0.1580 

Weighted marginal cost 0.0065 0.0002 0.0062 0.0068 

 

4.2 Estimation results: dynamic model 

Two dynamic models are estimated - the system GMM and the difference GMM model - in 

order to assess how the level of maintenance cost during one year affects the level of 

maintenance cost in the next. We also estimate the system GMM on a panel data set over the 

period 1999-2002 for comparison between a shorter data set (as in Andersson 2008) and our 

extended data set. The output table is presented in the appendix (Table 9), where Model 2a 

and 2b refer to model estimations using observations over the period 1999-2014 and 1999-

2002, respectively. We use the Windmeijer (2005) correction of the variance-covariance 

matrix of the estimators, and we therefore only report the two-step results.
9
 Dummy variables 

for regions are included in the system GMM model to control for heterogeneity. Region West 

is the baseline in the model. 

To examine the validity of the lagged instruments, we test for autocorrelation in the 

differences of the idiosyncratic errors. We expect to find a first-order autoregressive process – 

AR(1) – in differences because ∆𝑣𝑖𝑡 should correlate with ∆𝑣𝑖𝑡−1 as they share the 𝑣𝑖𝑡−1term. 

However, the presence of a second-order autoregressive process – AR(2) – would indicate 

that the instruments are endogenous and therefore not appropriate in the estimation. We 

maintain the null hypothesis of no AR(2) process in our models according to the Arellano and 

Bond test in both models (see Table 10). The other test results presented in Table 10 also 

indicate valid instruments: the null hypothesis of the Sargan test (not robust) and the Hansen 

                                                 
9
 Without the Windmeijer (2005) correction, the standard errors are downward biased in the two-step results, 

which would be a motivation for reporting the one-step estimation results together with the two-step results 

(Roodman 2009a). 
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test (robust) of overidentifying restrictions is that we have valid instruments (not correlated 

with the error term), which we maintain in both models (except for the Sargan test, which 

however is not robust). Moreover, the tests of the subsets of instruments also show that these 

are valid; we maintain the null hypothesis of the Hansen test of excluding groups (excluded 

instruments are not correlated with independent variables) as well as the null hypothesis of the 

difference-in-Hansen test (C-test) that the instruments used are exogenous. 

The results from the difference GMM are unsatisfactory with respect to significance 

levels and the coefficients for track length, rail age and length of structures (tunnels and 

bridges) have unexpected negative signs.  As mentioned in Section 2.3, Alonso-Borrego and 

Arellano (1999) and Blundell and Bond (1998) show that the GMM estimator based on first 

differences can produce imprecise and biased estimates. 

We therefore focus on the system GMM results.  The coefficient for lagged 

maintenance costs (MaintC t-1) is 0.2140, with a standard error at 0.0548, indicating that an 

increase in maintenance costs in year 𝑡 − 1 increase costs in year 𝑡. The cost elasticity with 

respect to gross ton is 0.3058 with a standard error at 0.1415 (p-value=0.032). With a lagged 

dependent variable in our model, we are able to calculate cost elasticities for output that 

account for how changes in costs in the previous year affect costs in the current year: 

 

𝛾𝑖𝑡 =
�̂�1

(1−�̂�0)
          (11) 

 

�̂�0 is the estimated coefficient for the lagged dependent variable and �̂�1 is the cost elasticity 

for gross ton.
10

 The cost elasticity with respect to output and lagged costs is 0.3891 with 

standard error at 0.1701 (p-value=0.023). This may be referred to as the equilibrium cost 

                                                 
10

 In equilibrium 𝑙𝑛𝐶𝑖𝑡 = 𝑙𝑛𝐶𝑖𝑡−1 which implies that equilibrium cost  𝑙𝑛𝐶𝑖
𝑒 = 𝜇𝑖 + 𝛽0𝑙𝑛𝐶𝑖

𝑒 + 𝛽1𝑙𝑛𝑇𝐺𝑇𝐷𝐸𝑁𝑖  

(only considering track section specific effect and tonnage for simplicity) and rearranging gives  𝑙𝑛𝐶𝑖
𝑒 =

𝜇𝑖

1−𝛽0
+

𝛽1

1−𝛽0
𝑙𝑛𝑇𝐺𝑇𝐷𝐸𝑁𝑖 . 
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elasticity
11

 since it shows how an increase in traffic (picked up by MaintC t-1) affects 

maintenance costs that have adjusted into equilibrium. This elasticity is significantly different 

from the direct cost elasticity (0.3058) at the 5 per cent level (F(1, 197)=5.26 and Prob>F= 

0.023). 

Similar to equations (7)-(10), we use the predicted cost to estimate average cost and 

marginal costs, which are summarized in Table 4. The weighted marginal cost is 0.0094 SEK, 

while the equilibrium weighted marginal cost (0.0120 SEK). 

 

Table 4 - Estimated costs, SEK in 2014 prices: Model 2a (2578 obs.) 

Variable Mean Std. Err. [95% Conf. Interval] 

Average cost 0.1144 0.0043 0.1060 0.1228 

Marginal cost 0.0350 0.0013 0.0324 0.0375 

Weighted marginal cost 0.0094 0.0002 0.0091 0.0098 

Equilibr. marginal cost 0.0445 0.0017 0.0413 0.0478 

Equilibr. weighted marginal cost 0.0120 0.0002 0.0116 0.0124 

 

The positive coefficient for lagged maintenance costs might to some extent seem 

counterintuitive, since an increase in maintenance costs in one year could be expected to 

reduce the need to maintain the track the following year. In this, however, it is important to 

note that the coefficient for lagged maintenance costs shows how a change in traffic (and/or in 

other cost drivers) affects costs in subsequent period(s) – that is; the estimate is an indication 

of the response taken by the IM. To make this clearer, we consider two main scenarios in 

Table 5. An increase in (planned) preventive maintenance can be expected to reduce the need 

for both (unplanned) corrective and preventive maintenance the following year; this is 

scenario 1 in Table 5. On the other hand, an increase in corrective maintenance is typically 

triggered by acute, un-foreseen problems and will not necessarily reduce the level of 

maintenance the following year. This is so since an increase in the number of corrective 

                                                 
11

 We thank Phill Wheat (Institute for Transport Studies, University of Leeds) for suggesting this term. 
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maintenance activities can be a sign of a track with quality problems, and may signal the need 

for additional corrective maintenance the following year. If this is correct, the following year 

might even require more maintenance compared to the previous year since the line has now 

been used another year by another millions of gross tons (scenario 2b). Preventive 

maintenance may slow down this downward circle, and it is likely that a welfare optimising 

IM allocates additional resources to a track section with high corrective maintenance the 

previous year (scenario 2a), or decides to renew the tracks. 

 

Table 5 - Scenarios for preventive and corrective maintenance 

 Scenario 1 Scenario 2 

Year Preventive maint. Corrective maint. Preventive maint. Corrective maint. 

 T +   + 

t+1 - - +a +b 

a
 scenario 2a 

b
 scenario 2b 

 

We also note that a large coefficient for lagged maintenance costs (and hence a large 

equilibrium cost) may reflect an inability of the IM to give the appropriate response to past 

changes, indicating that the IM has not done enough - or the right type of activities - to cope 

with these changes. Whether that is the case or not for the Swedish IM is beyond the scope of 

this paper, and would also require information on delay costs caused by poor infrastructure 

quality. 

The positive dependence between current and future maintenance costs is opposite to 

previous results in Andersson (2008), who used a difference GMM model. To make sure that 

it is not the model choice that generate the difference in signs of the intertemporal effect, we 

consider the system GMM estimator on the 1999-2002 sample, which yields similar (yet not 

significant) results to Andersson (2008) with a negative coefficient for lagged maintenance 

costs. The results from this model (2b) are provided in Table 9 in the appendix. The short 
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sample period results may be caused by a temporary response in maintenance towards wear 

and tear, such as an increase in preventive maintenance rather than corrective maintenance. 

Information on the amount of corrective and preventive maintenance performed over the 

years is unfortunately not available. 

 

5. Discussion and conclusion 

With access to considerably more data than previous studies, this paper uses econometric 

techniques for estimating the relationship between maintenance costs and traffic. The first 

observation is that our new (static) estimate is lower than before; using Swedish data and the 

fixed effects estimator, it is 0.17 rather than 0.26. The second result is that adding a dynamic 

component to the model estimation increases the elasticity to 0.39. These values are all within 

the range of what we use as our benchmark. Using much data and modern econometric 

techniques, it is therefore fair to say that research is converging towards consensus.   

A change in results of the static elasticity is not surprising considering the longer time 

period of our data, during which major changes in the organisation of railway maintenance 

have been carried out. An additional difference is that our modelling includes more 

infrastructure characteristics. These were assumed to be constant in previous model 

estimations on Swedish data, which can be a reasonable assumption using a fixed effects 

model on a short panel. The introduction of factor prices has not made a visible imprint on 

results. This outcome is not very surprising, bearing in mind the homogeneity of Sweden’s 

labour market with small wage differences at large, as well as the fact that much input to the 

maintenance activity – notably rails and sleepers – is tendered separately by the IM and made 

available to maintenance contractors. 

The transfer from in-house production to competitive tendering has reduced costs by 

about 10 percent. This further motivates a comparison of our marginal cost estimates with 
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previous estimates presented in Table 1. Considering that previous estimates on Swedish data 

do not include snow removal costs, we delete these costs in Model 1 in order to make a fair 

comparison of new versus previous marginal costs. The weighted marginal cost is then 0.0060 

SEK, which is about 26-29 per cent lower than previous estimates in Andersson (2007 and 

2008). 

Table 6 summarises the outcome of both the static Model 1 estimate and a dynamic 

aspect of maintenance (Model 2a). The results show that an increase in maintenance costs in 

year 𝑡 − 1 predicts an increase in maintenance costs in year 𝑡. While the tests are done in a 

dynamic setting, the results are fully consistent with the standard definition of short run 

marginal costs: an exogenous change in traffic triggers not only immediate but also 

subsequent maintenance activities. 

 

Table 6 - Cost elasticities and marginal costs with standard errors in parentheses 

Model Method 

Cost elasticity  

(std. err) 

Weighted marginal  

cost, SEK 

1 Fixed eff. 0.1729 (0.0421) 0.0065 

2a System GMM 0.3058 (0.1415)   

0.3891
a
 (0.1701) 

0.0094 

0.0120
b 
 

a
 Equilibrium cost elasticity. 

b
 Equilibrium weighted marginal cost. 

 

Future research should aim at examining the dynamic costs more in depth. Budget restrictions 

and maintenance strategies governed by contract design will affect the amount and type of 

maintenance activities that will be implemented one year, which will have an effect on the 

required maintenance in future years. Moreover, modelling the interdependence between 

maintenance and renewals is an important area of research, for example in order to perform a 

cost benefit comparison of the significance of these two activities. This includes a study of the 

consequences of using accumulated rather than annual tonnage in order to understand whether 

time and aggregate use offer complementary explanations of track decay. 
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Appendix 

Table 7 – Definitions of variables 

Variable Definition 

Mixtend Dummy for years when mix between tendered and not tendered in competition, which 

is the year when tendering starts 

Ctend Dummy when tendered in competition 

Year00-Year14 Year dummy variables, 2000-2014 

Tgtden ln(total ton density) 

Track_l ln(track length) 

Ratio_tlro [ln(track length/route length)] 

Rail_age ln(average rail age) 

Qual_ave ln(average quality class) 

Switch_l ln(track length of switches) 

Switch_age ln(average age of switches) 

Struct_l ln(track length of structures (tunnels and bridges)) 

Max.axle_lo ln(maximum axle load allowed) 

Snow ln(average mm of precipitation (liquid water) when temperature < 0˚Celcius) 

MaintC t-1 ln(Maintenance costst-1) 

Qual_ave t-1 ln(Qualavet-1) 

D.eas Dummy for region East 

D.nth Dummy for region North 

D.ctr Dummy for region Central 

D.sth Dummy for region South 

 

Table 8 – Estimation results: Model 1, Static panel data model 

 Coef. 

Drisc/Kraay  

Std. Err.  Coef. 

Drisc/Kraay  

Std. Err. 

Cons. 15.5319*** 0.1141 TgtdenSwitch_tl 0.0102 0.0217 

Tgtden 0.1437*** 0.0401 TgtdenSwitch_age -0.0077 0.0319 

Track_l 0.5550*** 0.1545 TgtdenMax.axle_load -0.2347 0.2158 

Ratio_tlro 0.0410 0.1921 TgtdenSnowmm -0.0077 0.0209 

Rail_age 0.1023** 0.0475 Track_l^2 0.5707*** 0.1062 

Qual_ave 0.0285 0.1908 Track_lRatio_tlro -0.2130 0.1820 

Switch_tl 0.1123 0.0740 Track_lRail_age 0.1473** 0.0590 

Switch_age 0.0245 0.0426 Track_lQual_ave -0.1962 0.2370 

Max.axle_load 0.3244 0.3742 Track_lSwitch_tl -0.0292 0.0619 

Snowmm 0.0492 0.0329 Track_lSwitch_age -0.0826** 0.0389 

Mixtend -0.0272 0.0398 Track_lMax.axle_load -0.4127* 0.2451 

Ctend -0.1060** 0.0372 Track_lSnowmm -0.0524 0.0402 
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Year00 0.0400 0.0426 Ratio_tlro^2 -0.3325 0.2845 

Year01 0.0018 0.0263 Ratio_tlroRail_age 0.2501*** 0.0458 

Year02 0.2231*** 0.0330 Ratio_tlroQual_ave -0.4226 0.3362 

Year03 0.2166*** 0.0420 Ratio_tlroSwitch_tl 0.0113 0.1294 

Year04 0.2580*** 0.0362 Ratio_tlroSwitch_age 0.0677 0.0836 

Year05 0.2803*** 0.0463 Ratio_tlroMax.axle_load -0.2685 0.7719 

Year06 0.2081*** 0.0548 Ratio_tlroSnowmm -0.0185 0.0468 

Year07 0.2857*** 0.0637 Rail_age^2 0.0632 0.0660 

Year08 0.2778*** 0.0710 Rail_ageQual_ave -0.0660 0.1698 

Year09 0.3146*** 0.0607 Rail_ageSwitch_tl -0.0978*** 0.0237 

Year10 0.3273*** 0.0609 Rail_ageSwitch_age 0.0154 0.0616 

Year11 0.4227*** 0.0702 Rail_ageMax.axle_load 0.9280 0.6136 

Year12 0.4881*** 0.0660 Rail_ageSnowmm -0.0342 0.0247 

Year13 0.6111*** 0.0667 Qual_ave^2 0.3241 0.5042 

Year14 0.7676*** 0.0707 Qual_aveSwitch_tl 0.0155 0.1439 

IronTgtden 0.0710** 0.0317 Qual_aveSwitch_age -0.0119 0.0483 

IronTrack_l 0.0184 0.0382 Qual_aveMax.axle_load 0.1831 0.8838 

IronRatio_tlro 0.0771 0.0701 Qual_aveSnowmm -0.0690 0.0810 

IronRail_age 0.0959 0.0650 Switch_tl^2 0.0360 0.0591 

IronQual_ave 0.2190 0.1697 Switch_tlSwitch_age -0.0412 0.0351 

IronSwitch_tl -0.0277 0.0310 Switch_tlMax.axle_load -0.1404 0.3532 

IronSwitch_age -0.0120 0.0539 Switch_tlSnowmm 0.0445** 0.0201 

IronMax.axle_load -1.0525*** 0.2491 Switch_age^2 -0.0283 0.0884 

Tgtden^2 0.0425 0.0390 Switch_ageMax.axle_load -0.8663 0.7138 

Tgtden^3 0.0271** 0.0131 Switch_ageSnowmm 0.0017 0.0353 

TgtdenTrack_l 0.0428 0.0267 Max.axle_load^2 1.1700 1.4623 

TgtdenRatio_tlro -0.0116 0.0544 Max.axle_loadSnowmm 0.2600 0.3151 

TgtdenRail_age 0.0066 0.0373 Snowmm^2 -0.0005 0.0387 

TgtdenQual_ave 0.1605*** 0.0548 

   No. Obs.    2802 

Mean VIF   6.02 

Pesaran’s test
a
    -1.983   p-value=  0.048 

Breusch-Pagan (1980) LM-test Chi2bar2(1)=985.1 p-value=  0.000 

Hausman’s test statistic
b
   Chi2(65)=187.6  p-value=  0.000 

Cobb-Douglas restriction test F(15, 202)=190.64 p-value=  0.000 

a
 Test is made on a balanced panel of 2176 obs. The null hypothesis is cross sectional independence.

 

b
 Year dummies are excluded in the test (see Imbens and Wooldridge 2007). 

We have transformed all data by dividing by the sample median prior to taking logs. 

See Table 7 for definition of variables. 

Note: ***, **, *: Significance at 1 %, 5 %, and 10 % level, respectively 
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Table 9 – Estimation results: Model 2a (years 1999-2014) and Model 2b (years 1999-2002) 

 

Model 2a 

 

Model 2b 

 

 

Coef. Corr. Std. Err. Coef. Corr. Std. Err. 

Cons. 4.1174** 2.0144 38.4547 63.7508 

MaintCt-1 0.2140*** 0.0548 -0.3388 0.9666 

Tgtden 0.3058** 0.1415 0.4890 0.3201 

Track_l 0.3842*** 0.0749 -0.5364 1.7634 

Ratio_tlro -0.1531 0.1480 -1.8262 2.7499 

Rail_age 0.0606 0.0418 0.2180 0.4997 

Qual_avet-1 0.1204 0.2708 -6.5761 12.8970 

Switch_tl 0.1546*** 0.0563 0.6725 0.7738 

Switch_age 0.0680 0.0945 2.0418 3.4254 

Struct_tl 0.0422 0.0342 -0.3132 0.5862 

Max.axle_lo -0.8031 0.9147 -7.2321 10.7404 

Snowmm 0.0439* 0.0249 0.1103 0.1776 

Mixtend -0.0012 0.0379 - - 

Ctend -0.1286*** 0.0444 - - 

Year01 0.0099 0.0425 0.0000 0.1069 

Year02 0.2163*** 0.0407 0.1239 0.2346 

Year03 0.1537*** 0.0434 - - 

Year04 0.1967*** 0.0469 - - 

Year05 0.2231*** 0.0472 - - 

Year06 0.1983*** 0.0570 - - 

Year07 0.2370*** 0.0505 - - 

Year08 0.2221*** 0.0578 - - 

Year09 0.2860*** 0.0602 - - 

Year10 0.3071*** 0.0705 - - 

Year11 0.3984*** 0.0665 - - 

Year12 0.4806*** 0.0695 - - 

Year13 0.5696*** 0.0667 - - 

Year14 0.6768*** 0.0757 - - 

D.eas -0.1500 0.1562 1.4950 2.6475 

D.nth 0.0458 0.1319 4.2988 7.7234 

D.ctr -0.1367 0.1205 2.0658 3.9842 

D.sth -0.0975 0.0840 1.4463 2.6754 

No. obs. 2578  508  

No. instruments 68  20  

See Table 7 for definition of variables. 

Note: ***, **, *: Significance at 1 %, 5 %, and 10 % level, respectively 
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Table 10 – Diagnosis tests: Models 2a and 2b 

Model 2a Model 2b 

A-B test AR(2) in first diff. 

z=1.28 Pr>z=0.202 - - 

Sargan test of overidentifying restrictions: 

Chi2(36)=81.06 Pr>Chi2=0.000 Chi2(2)=16.62 Pr>Chi2=0.000 

Hansen test of overid. restrictions: 

Chi2(36)=44.40 Pr>Chi2=0.159 Chi2(2)=7.71 Pr>Chi2=0.021 

GMM instruments for levels 

Hansen test excl. group 

Chi2(33)=40.96 Pr>Chi2=0.161 - - 

Diff.-in-Hansen test (null H = exogenous): 

Chi2(3)=3.43 Pr>Chi2=0.330 Chi2(2)=2.44 Pr>Chi2=0.295 

gmm(MaintCt-1 lag(1 14)) gmm(MaintCt-1 lag(1 14)) 

Hansen test excl. group: 

Chi2(21)=25.50 Pr>Chi2=0.226 - - 

Diff.-in-Hansen test (null H = exogenous) 

Chi2(15)=18.90 Pr>Chi2=0.218 - - 

gmm(tgtden. lag(4 14)) gmm(tgtden. lag(3 4)) 

Hansen test excl. group 

Chi2(24)=25.12 Pr>Chi2=0.399 - - 

Diff.-in-Hansen test (null H = exogenous) 

Chi2(12)=19.28 Pr>Chi2=0.082 Chi2(2)=7.71 Pr>Chi2=0.021 

gmm(Qualavet-1 lag(3 13)) gmm(Qualavet-1 lag(3 13)) 

Hansen test excl. group 

Chi2(24)=27.28 Pr>Chi2=0.292 - - 

Diff.-in-Hansen test (null H = exogenous) 

Chi2(12)=17.12 Pr>Chi2=0.145 - - 

 

 


